

Draft Preliminary Geotechnical Engineering Report Piscataway Drive Slope Failure

Fort Washington, Prince George's County, Maryland

Prepared For

Prince George's County Government, Maryland THIS DRAFT REPORT WAS PREPARED FOR THE EXPRESS PURPOSES OF PROVIDING ADVICE AND TECHNICAL EXPERTISE TO THE COUNTY EXECUTIVE STAFF TO ASSIST IN THEIR DECISIONAL PROCESSES

Prepared By

KCI Technologies, Inc. May 19, 2014

Leading Through Excellence | www.kci.com | Employee-owned Since 1988

ENGINEERS · PLANNERS · SCIENTISTS · CONSTRUCTION MANAGERS

936 RIDGE BROOK ROAD + HUNT VALLEY, MD 21152 + 410-316-7800 + (FAX)410-316-7817 + WWW.KCI.COM

Phone (410) 316-7800 FAX (410) 316-7935 Direct Dial (410) 316-7919

May 19, 2014

Nicholas A. Majett Acting Chief Administrative Officer Prince George's County Government County Executive's Office 14741 Governor Oden Bowie Drive Upper Marlboro, Maryland 20772 namajett@co.pg.md.us

 Subject: Draft Preliminary Geotechnical Engineering Report Piscataway Drive Slope Failure Fort Washington, MD, Prince George's County, Maryland KCI Job. No.: 07100627.W
 THIS DRAFT REPORT WAS PREPARED FOR THE EXPRESS PURPOSE

THIS DRAFT REPORT WAS PREPARED FOR THE EXPRESS PURPOSES OF PROVIDING ADVICE AND TECHNICAL EXPERTISE TO THE COUNTY EXECUTIVE STAFF TO ASSIST IN THEIR DECISIONAL PROCESSES

Dear Mr. Majett:

KCI Technologies, Inc. (KCI) has completed the preliminary geotechnical exploration for the Piscataway Drive slope failure.

The attached report presents a description of the existing site, subsurface conditions encountered, and recommendations for stabilizing the failed slope.

We appreciate the opportunity to provide these services and look forward to serving as your geotechnical consultant throughout this project. Please contact us if you have any questions regarding the information presented.

Sincerely,

KCI TECHNOLOGIES, INC.

Shanzhi Shu, PhD, PE Senior Geotechnical Engineer

Kwabena Ofori-Awuah, PE, ENV-SP Practice Leader, Geotechnical Engineering

"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NO.:_25981_ EXPIRATION DATE:_3/22/15_"

Kofi Acheampong, PhD PE, ENV-SP Chief Geotechnical Engineer

TABLE OF CONTENTS

1.0	IN	TRODUCTION	1
1.1]	PROJECT INFORMATION	1
1.2		SCOPE OF SERVICES	1
2.0	E	XISTING SITE AND SUBSURFACE CONDITIONS	3
2.1]	EXISTING SITE CONDITIONS	3
2.2		GEOLOGIC SETTING	4
2.3		SUBSURFACE EXPLORATIONS AND IN-SITU TESTING	5
2.	.3.1	Standard Penetration Test	6
2.	.3.2	Cone Penetration Test	6
2.	.3.3	Undisturbed Soil Sampling	7
2.	.3.4	Soil Conditions	8
2.	.3.5	Groundwater and Cave-in Conditions	9
2.4		SLOPE MOVEMENT MONITORING	11
2.5]	LABORATORY TESTING	12
3.0	G	EOTECHNICAL EVALUATIONS	14
3.1		SLOPE STABILITY ANALYSES	14
3.2]	POTENTIAL CAUSES OF THE EXISTING LANDSLIDE	16
4.0	G	EOTECHNICAL RECOMMENDATIONS	18
4.1		GENERAL	18
4.2		SLOPE STABILIZATION OPTIONS	18
4.3		UTILITY COORDINATION AND RECONSTRUCTION RECOMMENDATIONS	20
4.4]	ENVIRONMENTAL COORDINATION	21
4.5]	ROADWAY RECONSTRUCTION AFTER THE SLOPE STABILIZATION PROCESS HAS	5
BEI	EN	COMPLETED	22
5.0	ST	FRATEGY FOR MOVING FORWARD	24
6.0	BA	ASIS OF RECOMMENDATIONS	25

APPENDICES

APPENDIX A

Figure 1: Site Location Map
Figure 2: Exploration Plan
Figure 3A – Regional Geology Map
Figure 3B – Site Geology Map
Figure 4A: Subsurface Profile A – A'
Figure 4B: Subsurface Profile B – B'
Figure 4C: Subsurface Profile C – C'
Figure 5: Potential Failure Plane in Boring B-15 (22'-24')

APPENDIX B

Test Boring Logs Cone Penetrometer Testing Results Field Exploratory & Slope Monitoring Procedures

APPENDIX C

Laboratory Test Results Soil Data Summaries Laboratory Testing Procedures

APPENDIX D

Slope Stability Analyses (Back Calculations) Slope Stabilization Options

APPENDIX E

Slide Features

APPENDIX F

Roadway Plans

EXECUTIVE SUMMARY

This report contains the results of our subsurface explorations and preliminary geotechnical evaluations for repairing the approximately 1,500-foot section of failing slopes and ground movements along Piscataway Drive, Fort Washington, Prince George's County, Maryland. We performed 15 soil test borings, 10 cone penetration tests; and installed one piezometer to explore the subsurface conditions at the site. Additionally, we installed six inclinometers to monitor ground movements.

The test borings and CPT data revealed a soil profile consisting of three distinct strata within their termination depths, consistent with published geology. Stratum I (Ta, Nangemoy Formation) generally consisted of moist, brown, light brown, dark gray, very loose to medium dense Silty Sand, Clayey Sand, Sand with Gravels, and interbedded with soft to stiff Sandy Silt and Sandy Clay layers. A 20 to 30-ft thick layer of Stratum II (Marlboro Clay, Tm) underlies Stratum Ta. It consisted of moist to wet, reddish brown, brown, light gray to gray, Lean Clay with occasional thin lenses of micaceous Silt. Locally, we encountered Fat Clays within this stratum. Beneath the Tm, we encountered Stratum III (Aquia Formation, Ta) which consisted of moist to wet, olive gray, greenish gray to dark gray, Silty Sand and Sandy Silt with mica and calcareous shell fragments scattered throughout the stratum.

Based on preliminary site evaluations, analyses and review of historic information, the existing Marlboro Clay stratum made the site susceptible to slope failures. The intense and rapid infiltration of rainfall that occurred prior to the slope failure created saturated soil conditions resulting in significant loss of shear strength. The exploration data provided evidence of a failure plane within the Marlboro Clay stratum.

KCI proposes three options to stabilize the slopes with each soil-structure system extending beyond the anticipated failure planes. They are: 1) Drilled Shaft foundation along the east and west slopes abutting the roadway and Micropile Anchors at the head scarp upslope; 2) Drilled Shaft Foundation for east slope and Micropiles for west slope; 3) Micropiles for both east and west slopes. We anticipate that the resulting ground movements indicated by the inclinometer readings will have significant implications for the slope rehabilitation options. We therefore recommend that additional detailed analyses and design, constructability evaluation and cost analyses be performed for each option as part of the design purposes.

Design and construction considerations should not be based solely on the executive summary without reading the entire report.

1.0 INTRODUCTION

1.1 PROJECT INFORMATION

The project is located in Prince George's County in the proximity of 13700 to 13816 Piscataway Drive, Fort Washington, Prince George's County, Maryland. The site is bordered by Piscataway Creek on the east and Pine Road to the west. The Piscataway Drive, which traverses the site, is bordered by steep slopes on both sides with homes perched above and below the roadway. Figure 1 illustrates the site.

Historically, the slopes above and below Piscataway Drive have been experiencing surficial movement over a long period of time, but on May 4, 2014, significant failure.

Cracks began appearing in the pavements on Piscataway Drive on May 2, 2014 and escalated into major slope failures and pavement distress on May 4, 2014. Prior to May 2, there were no visible cracks or fractures on the slopes. Cracks, however, appeared on the slopes and widened on May 4 resulting in continuous fracture and downward movement of the western slope for a distance of approximately 450 feet long. The depth of failure along the slopes ranged from about 4 feet to about 20 feet. The deeper failure depths were results of root bulbs from several toppled trees during the slope failure.

The slope failure has directly threatened six homes, disrupted power, water supply, communications and other services to an additional 22 homes along the Piscataway Drive. It has also jeopardized the use of most of roadway from 13700 Piscataway Drive to the southernmost part of the drive. The affected portion of Piscataway Drive remains closed and the County has determined and declared numerous homes in the vicinity of the slide unfit and/or unsafe for occupancy.

1.2 SCOPE OF SERVICES

The purpose of this study is to obtain specific subsurface data at the site, review existing site geologic data and assess the cause of the slope failure and develop recommendations for:

- Rehabilitating the slope failure;
- Reconstructing Piscataway Drive;
- Repairing the utilities; and
- Options for moving forward in the design and construction phases.

Assessments of site environmental conditions or the presence or absence of pollutants in the soil, rock, surface water, or groundwater of the site were beyond the proposed objectives of our studies.

The report for this study includes the following:

- A brief review of our field and laboratory test procedures and their results
- Evaluation of subsurface conditions to include:
 - Review of surface topographic features and site conditions
 - Review of site geologic conditions
 - Review of near surface soil conditions
 - Estimates of subsurface profiles, as necessary, to illustrate subsurface conditions
- A review of possible causes of slope failure
- Evaluation of various alternatives for stabilizing the slopes
- Recommendations for stabilizing the slopes, reconstructing the affected portions of the Piscataway Drive, repairing the damaged utilities, and
- Options for moving forward in the design and construction phases

2.0 EXISTING SITE AND SUBSURFACE CONDITIONS

2.1 EXISTING SITE CONDITIONS

KCI conducted a site reconnaissance on May 3rd and 4th, 2014. The purpose of the site reconnaissance was to observe and document existing surface conditions. Information gathered during the site visit and site GIS data provided to us by Messieurs Unmesh Patel and Dwight Joseph of Prince George's County were used to help us interpret the subsurface data and to detect conditions that could affect our evaluations and recommendations.

The site topography is generally hilly. Piscataway Drive traverses the site. The difference in elevations between the top of the hill and the Piscataway Drive is approximately 65 feet. The elevation difference between the highest and lowest point of the site is approximately 100 feet. There are several residential buildings east and west of the Piscataway Drive. The slopes west of the roadway are about 1.5 Horizontal to one Vertical (1H:1V) or steeper downwards towards the Piscataway Drive. The eastern slopes are generally 1.5H: 1V to 3H: 1V or gentler towards the Piscataway Creek. The slopes are generally covered with thick brush and large trees.

Soils when exposed appeared soft, moist and generally silty sands with organics. We did not observe any rock outcrops. Though it had rained the previous night, there was no evidence of surficial or ponded water except areas where underground water force main had cracked. Prior to the visit, the area had experienced high levels of precipitation over a short period of time.

We observed evidence of slope failure on both sides of the roadway. Additionally there were several cracks openings on the order of three to six inches in width in the pavement structure. The pavement edges had also settled several inches with the highest settlement of about four feet occurring around 13700 Piscataway Drive. The soil mass near the top of the hill had moved laterally downslope towards the roadway about two to three feet, and on the average, had settled approximately eight feet. Vertical cracks were visible due to this movement. Several trees had toppled, as a result of the slope failure, and had snapped the overhead utility lines. We observed evidence of past slope movement which appears to be

surficial movement of the soil mass. At a nearby previously condemned two-story structure located at 13710 Piscataway Drive we observed evidence of lateral movement and settlement cracks. There were several fissures in the driveway and around the house. We observed several distresses in the foundation wall. We further observed that the driveway leading to the garages is no longer accessible due to ground movement.

Residents recall minor sloughing of the slopes which are consistent with our observations during the site reconnaissance. We, however, did not observe any evidence of past slope repairs nor were we provided any records indicating that. We did not observe any storm drainage system in the vicinity of the failed slopes.

Underground utilities consist of water and sewer mains with service power and other lines to the various premises within the site. There are overhead utility which consist of power, communications and cables lines.

2.2 GEOLOGIC SETTING

Based on a review of the Geologic Map of Prince George's County (2003), the site is underlain by unconsolidated sediments ranging in geologic times from Holocene to Lower Paleocene. It is dominated by relatively thick, tripartite Paleocene-Eocene section- the Aquia (Ta) and Nanjemoy (Tn) Formations separated by the 20 to 30 feet of Marlboro Clay (Tm) (Figures 3A & 3B, Appendix A). These three units have an aggregate thickness of about 300 feet in outcrop. Both the Aquia and Nanjemoy are variably muddy, fossiliferous greensands in contrast to the Marlboro which is a thin but persistent pinkish to gray plastic clay. The Paleocene-Eocene section includes about 500 ft. of sediment.

The Aquia is composed of sand, fine-to medium-grained, poorly sorted well sorted, containing as much as 40 percent glauconite. Thin layers of calcareous shelly sandstone are scattered through the unit giving it the "salt and pepper" speckled. It is generally greenish gray to medium gray in color.

The Nanjemoy consists of mostly quartz sand, fine-to coarse-grained, with a variable amount of interstitial silt-clay and as much as 50 percent of green glauconite, also imparting a "salt and pepper" aspect to the sediments. Poorer outcrops are found along the Piscataway Creek. The glauconite sand in this formation is medium-gray to dark greenish gray, where unweathered. The silty-clay is dark-gray to chocolate-brown in color.

The Marlboro Clay is a continuous stratum throughout Southern Maryland. It is poorly exposed, mostly because it is thin and covered by slumping of the overlying sediments. In the valleys of the Piscataway and Mattawoman Creeks, the clay is effectively buried Holocene alluvium. Scattered patches of typically brownish red Marlboro clays are exposed along MD 210 just north of Piscataway Creek in Prince Georges County. The Marlboro Clay is a thin but highly distinctive unit composed of dense, brittle clay, ranging from thickly-bedded to finely laminated, lenticular or hummocky in part, containing partings and thin lenses of micaceous and lignitic laminated silt. It is usually pale-red to silvery-gray, and contains minor interbedded silt which is yellowish gray to pale-gray in color.

2.3 SUBSURFACE EXPLORATIONS AND IN-SITU TESTING

KCI's sub-contractors, CenKen Group, LLC (CenKen) and Hillis-Carnes Engineering Associates, Inc. (HCEA) performed emergency subsurface explorations in the areas of the failing slope. The exploration program consisted of 15 standard penetration test (SPT) borings and 10 cone penetrometer test (CPT) soundings. Additionally, we installed six inclinometers and one groundwater monitoring well (piezometer). We conducted the subsurface explorations from May 6 to May 15, 2014 in accordance to the procedures presented in Appendix B. The depth of the explorations ranged from 40 feet to 100 feet into natural soils. The approximate exploration boring and tests locations are shown on Figure 2 in Appendix A. The boring logs and CPT are included in Appendix B.

2.3.1 Standard Penetration Test

We drilled test borings in general accordance with ASTM D420 procedures presented in Appendix B. The borings were advanced using ATV drill rigs equipped with hollow stem augers (HSA) and mud-rotary drilling in cased holes in general accordance with ASTM D1452. We conducted continuous standard penetration tests (SPTs) in the borings in general accordance with ASTM D 1586.

We performed standard penetration tests (SPT) borings in accordance with ASTM D1586. The SPT method consisted of advancing a two-inch diameter sampling spoon to a depth of 18 inches by driving it with a 140-pound hammer falling 30 inches. The values reported on the boring logs are the blows required to advance three successive six-inch increments. The first six-inch increment is considered as seating. The sum of the number of blows for the second and third increments is the "N" value. The "N" value is used to infer the general indications relative density and compressibility of the soils. KCI obtained soil samples using the SPT method and sampling was performed at two and half-foot intervals to a depth of ten feet below existing ground surface (bgs) and every five feet thereafter to boring terminations depth. We obtained representative disturbed soil samples during these tests and used them to classify the soils encountered. We placed the recovered representative soil samples in six-inch glass jars and transported to the laboratory for testing.

KCI geotechnical engineers visually classified the recovered soil samples in general accordance with ASTM D 2488 Standard Practice for Description and Identification of Soils. We classified soil samples with respect to texture in accordance with the Unified Soil Classification System (USCS). Boring logs describing the subsurface soils and groundwater conditions encountered at each of the boring locations are presented in Appendix B. The existing ground surface elevations indicated on the logs are based on field survey information provided by KCI-Survey.

2.3.2 Cone Penetration Test

We performed cone penetration tests (CPT) soundings in general accordance with ASTM D5778 at ten locations within the general project area between May 9 and 13, 2014. We use the results of the soundings

to characterize the existing subsurface conditions within the unstable ground and slope areas. In addition, we performed localized pore pressure dissipation tests at test locations CPT-1 and CPT-5. The approximate test locations are shown on the attached Figure 2. We have provided summary tables soundings of the CPT results in Appendix B. We terminated the sounding depths at pushing refusals between 38 and 75 feet below existing ground surface, typically in excess of about 55 feet. We inferred soils in general accordance to Soil Behavior Types proposed by Robterson (1990).

We performed CPT tests in general accordance with ASTM D5778. CPT permits continuous explorations and profiling of the subsurface conditions while minimizing retrieval of subsurface materials. This exploration method employs sensors that are pushed into the ground to infer the properties of both soils and pore fluids. Known as direct-push technology, this method can map out the vertical and lateral extents of stratigraphic layers, as well as the distribution of groundwater conditions.

In combination with the test boring information, we will use the CPT results to identify loose/soft and disturbed soils strata and weak zones, and predict or confirm the existing failure planes at depth. Also, it will provide soil and groundwater data for characterizing the stress history and shear strength parameters of in-situ soil materials. By using standard engineering correlations, the geotechnical properties of stratigraphic layers can be inferred. Inferred properties include constrained modulus, undrained shear strength, residual shear strength, friction angle, overconsolidation ratio, and the coefficient of consolidation.

2.3.3 Undisturbed Soil Sampling

Split-barrel samples are suitable for visual examination and classification tests but are not sufficiently intact for quantitative laboratory tests requiring undisturbed samples. Therefore, we obtained relatively undisturbed samples in selected borings by drilling to the desired depth and hydraulically forcing a section of 3-inch O.D., 16 gauge steel tubing into the soil. The sampling procedure is described by ASTM D 1587. We carefully removed each tube, together with the encased soil, from the ground, made airtight and transported to the laboratory. The appropriate test boring records show depths of undisturbed samples.

2.3.4 Soil Conditions

Figures 4A, 4B, and 4C in Appendix A depict generalized subsurface profiles at the project site across the slope failures. The subsurface conditions encountered at the boring locations are shown on the test boring records in Appendix B. Also, the inferred subsurface conditions at the CPT sounding locations are shown on the CPT records in Appendix C. These test boring records and profiles represent our interpretation of the subsurface conditions based on visual examination of field samples and laboratory tests. The lines designating the interfaces between various strata on the test boring records represent the approximate interface locations. The actual transitions between strata may be gradual.

Consistent with the published geologic mapping, the borings and CPT soundings encountered three major natural strata underlying existing 6-inch thick asphalt pavement structure and Fill materials. The natural soils include an upper sand stratum (Nanjemoy, Tn Stratum) overlying Marlboro Clay (Tm Stratum) and Aquaia Formation (Ta Stratum). These strata are briefly described in the following paragraphs.

Existing FILL (F):

This two to six feet thick stratum was encountered typically below the existing asphalt pavement (borings B-1 through B-10) and at borings B-14, B-15 and B-17 (within the vicinity of an abandoned building structure). Existing FILL materials consisted of a heterogeneous mixture of brown to reddish brown Silty Sand, Clayey Sand and Gravels with deleterious materials such as asphalt fragments, decomposed wood and organics. Soft silt and clay materials were locally encountered at boring B-15. The SPT N-values ranged from 3 to 19 blows per foot (bpf) indicating very loose to medium dense, typically loose relative density.

Stratum I: Natural Silty SAND, Clayey SAND, Sandy SILT (Tn Stratum)

This stratum was encountered below existing Fill or occurred as the top stratum in several test borings up to a depth of about 15 feet bgs in the elevated upslope areas. It appears to thin out towards the low lying and downslope areas towards the wetlands and stream (e.g., in the general area borings B-1 and B-4, and from B-13 towards B-16, etc.) It generally consisted of moist, brown, light brown, dark gray, very loose to medium dense Silty Sand (SM), Clayey Sand (SC), coarse Sand (SP) with Gravels, and interbedded with

soft to stiff Sandy Silt (ML) and Sandy Clay (CL) layers. The SPT blow counts ranged from 3 to 12 bpf indicating very loose to medium dense, typically loose relative density. Soils appeared to be slightly plastic.

Stratum II - CLAYS (Tm Stratum)

Marlboro Clay stratum was encountered below the Tn Stratum at each of the exploration locations. It varied in thickness from 15 to 30 feet with the base typically at approximate El. 78 and El. 74; and locally at approximate El. 50 at the lower topographic areas, and up to El. 135 at the higher elevations. It generally consisted of moist to wet, reddish brown, brown, light gray to gray, Lean Clay (CL) with occasional thin lenses of micaceous Silt. Locally, we encountered occasional Fat Clays (CH) within this stratum. The SPT N-values ranged from 3 to 14 bpf indicating generally soft to stiff compactness, typically medium stiff. The moisture content of the tested samples ranged from 14 to 48 percent. The Liquid Limit ranged from 26 to 59 percent with Plasticity Index (PI) ranging between 10 and 30 percent, indicating typically high to very high plasticity soils. We noted, however, that the clay soils appeared to be brittle.

Stratum III – SAND AND SILT (Ta Stratum)

This stratum was encountered below the Marlboro Clay to the boring termination depths. It generally consisted of moist to wet, olive gray, greenish gray to dark gray, Silty Sand (SM) and Sandy Silt (ML) with mica and calcareous shell fragments scattered throughout the stratum. The SPT N-values ranged from 5 to over 100 bpf (characterized by spoon refusals in the cemented layers), indicating generally loose to very dense relative density. The loose zones appeared to occur at the interface with the Marlboro Clay. The relative density appears to be typically medium dense to dense compactness, and/or stiff to hard compactness. The moisture content of the tested samples ranged from 20 to 30 percent, with non-plastic to slight plasticity (PI less than 4 percent).

2.3.5 Groundwater and Cave-in Conditions

We observed and recorded groundwater and cave-in depth information in each boring during drilling (within the drill augers), and several hours after completion of drilling (and removal of the augers). In addition, we have installed a piezometer near Boring B-2 to record long term groundwater levels. Table 2-

1 below provides a summary of groundwater conditions and cave-in depths. Where encountered, groundwater and/or perched water conditions generally occurred at depths between 10 and 60 feet bgs.

Cave-in occurred at depth between 14 and 65 feet bgs following removal of the drill augers. Cave-in may be due to the collapse of soils after removing augers at the completion of drilling. However, in granular soils, cave-in depths may be due to the presence of saturated soil conditions arising from groundwater and/or perched-water conditions.

Because of the presence of clayey and silty nature (characterized by relatively impermeable conditions) within portions of the site soils, site soils have the potential of developing perched water conditions. In addition, seasonal and/or long-term fluctuations of the groundwater levels and/or perched water may occur due to variations in rainfall, evaporation, soil capillary, construction activity, ground conditions and surface runoff, and other site-specific factors, and should be anticipated.

Table 2.1: Summary of Groundwater Condition						
Boring		Cave-in				
Nos.	Depth (ft)	Depth (ft)	Depth (ft)	Elevation	Depths	
	(in augers)	(0 hr)	(>24 hrs)	(ft)	(ft)	
B-1	43.8	57.8	-	11.8	14	
B-2	31.2	11.1		63.3	21	
Observation Well	-	36.7	37	37.6	-	
B-3	48	42	10	69.7	18	
B-4	-	59	34.3	63.3	36	
B-6			Mud rotary drill	ing		
B-7	20.5	12	11	104.0	65	
B-8			Mud rotary drill	ing		
B-9	18	17	15.5	105.2		
B-10	Mud rotary drilling					
B-11	Dry	-	-	-	92	

Table 2.1: Summary of Groundwater Condition						
Boring		Groundwater Levels				
Nos.	Depth (ft)	Depth (ft)	Depth (ft)	Elevation	Depths	
	(in augers)	(0 hr)	(>24 hrs)	(ft)	(ft)	
B-13		Mud rotary drilling				
B-14	54.8	36	9.8	99.6	25	
B-15	67.5	59	10.1	97.8	28	
B-16		Mud rotary drilling				
B-17			Mud rotary dril	ling		

Piezometers

KCI subcontractor, CenKen, installed one piezometer near Boring B-2 on May 13, 2014 to monitor long term groundwater levels. The screen was installed at between 35 to 50 feet below the existing ground surface. A KCI engineer obtained the initial water-level reading on May 13, 2014 using a groundwater monitoring meter. We plan to perform daily readings to monitor the long-term fluctuations of the water table at that location.

We installed and have been monitoring the groundwater levels in general accordance with ASTM D5092. The details of general installation procedures are provided in Appendix B.

2.4 SLOPE MOVEMENT MONITORING

Our subcontractor, CenKen, installed six inclinometer casings from May 9 to May 13, 2014 to monitor further slope movements. We installed the casings at an average depth of 70 feet below the existing slope surface. A KCI engineer commenced obtaining the baseline inclinometer readings from May 12 and 13, 2014 using a probe-type inclinometer. We plan to perform daily inclinometer readings to determine potential progressive slope movements prior to the slope stabilization. We will provide the results of our

slope monitoring along with final recommendations in a brief memorandum within two weeks from our last survey.

We are monitoring the slope movement in general accordance with ASTM D 6230. The details of general installation procedures and typical inclinometer survey procedures are provided in Appendix B.

2.5 LABORATORY TESTING

We performed laboratory testing on representative soil samples (from disturbed jar samples and undisturbed Shelby Tube samples) to confirm visual soils classifications and to determine physical properties of in-situ soils. The laboratory tests were conducted in general accordance with ASTM standards and included the following:

		No. of Tests
•	Natural Moisture Content (ASTM D 2216)	42
•	Classification Tests, including:	
	- Atterberg Limits (ASTM D 4813)	29
	- Sieve Analysis (ASTM D 422)	24
•	Direct Shear Test (ASTM D 3080)	5
•	CIU Triaxial Test (ASTM D 4767)	1
•	One-Dimensional Consolidation Test (ASTM D 2435)	1

We have provided details of laboratory testing procedures and the laboratory test results in Appendix C. Due to the slope failure and unstable ground issues associated with the presence of the Marlboro Clay stratum at the project site, we performed laboratory testing to determine shear strength parameters (undrained direct shear, DS and consolidated undrained Triaxial, (CIU) and deformation characteristics (one dimensional consolidation) of the Tm stratum. Table 2-2 provides a summary of the shear strength test results.

Preliminary Draft Geotechnical Engineering Report Piscataway Drive Slope Failure Prince George's County, Maryland KCI Job No. 07100627.W Page 13

	Table 2-2: Summary of Shear Strength Results for Marlboro Clay (Tm)									
Boring No.	Sample	Test Type	USCS	Cohesion c', (psf)	Friction Angle, ⁰	Moisture Content, (%)	Unit Weight, (pcf)	LL %	PI %	Fines %
B-13	ST-1 (22'-24')	DS	ML	997	29.3	36	115	48	18	78
B-13	ST-2 (28'-30')	DS	CL	473	22.4	32	118	39	14	100
B-14	ST-1 26.5'-28.5')	DS	CL	650	14.2	27	122	38	16	100
B-15	ST-1 (22'-24')	DS	CL	11.3	31	35	117	40	16	90
B-15	ST-1 (22'-24')	CIUC	CL	130	18.4	33	121	40	16	90
B-17	ST-1 (22'-24')	DSR	CL	759	29.7	44	116	47	28	74

*DS=Direct shear testing conducted at 0.01 in/minute shearing rate without residual cycles

**DSR = Direct shear testing conducted at 0.01 in/minute shearing with residual cycles

3.0 GEOTECHNICAL EVALUATIONS

3.1 SLOPE STABILITY ANALYSES

KCI performed preliminary global stability analyses for the pre-existing failure conditions of the slopes. This enabled us to back-calculate the critical shear strength parameters of the Marlboro Clay (Tm Stratum) under marginal stability conditions (defined by Factor of safety, FS = 1.0 or less). Based on the results of the subsurface explorations, we developed a typical subsurface profile for a critical slope section for our analyses as depicted in Appendix D. We have assumed that the phreatic water level was developed in the upper Tn (Stratum I) during slope failure.

We selected preliminary design soil parameters based on the field and laboratory test results, and our experiences with similar soil materials. We used the General Limit Equilibrium/Morgenstein-Price (GLE) method for the slope stability analyses to satisfy both force balances and moment balances of soil slices in order to find the most critical slip surface and the minimum factor of safety (FS) of the slope. We utilized both circular slip search and block slip search for the back analyses. We conducted our slope stability analyses using the software Slide Version 6.029 developed by RocScience Inc. We have analyzed several slope scenarios as part of the back-calculation evaluations using the following laboratory soil parameters and slope conditions as summarized in Table 3.1.

Table 3.1: Definition of Back Analyses Cases						
	Soil Properties: Marlbor Clay (Tm Stratum)					
Assumed Slope Conditions	C' (psf)	¢ ' (°)				
A. Groundwater depth at 10 feet and rear tension cracks	130	18				
B. Groundwater depth at 10 feet and no tension cracks	130	18				
C. Groundwater depth at 5 feet and rear tension cracks	130	18				
D. Groundwater depth at 5 feet and no tension cracks	130	18				
E. Groundwater depth at 10 feet and rear tension cracks	130	14				
F. Groundwater depth at 10 feet and no tension cracks	130	14				

Table 3.1: Definition of Back Analyses Cases					
	-	ties: Marlboro n Stratum)			
Assumed Slope Conditions	C' (psf)	\$ ' (°)			
G. Groundwater depth at 5 feet and rear tension cracks	130	14			
H. Groundwater depth at 5 feet and no tension cracks	130	14			

We have provided detailed of our slope analyses in Appendix D. The results of our preliminary slope stability analyses are summarized in Table 3.2.

	Table 3.2: Summary Results of Pre-Failure Slope Analyses							
Case	Hw	Tension Cracks Exist	φ' (°)	c' (psf)	FS			
А	10	Yes	18	130	1.02			
В	10	No	18	130	1.13			
С	5	Yes	18	130	0.91			
D	5	No	18	130	0.98			
Е	10	Yes	14	130	0.84			
F	10	No	14	130	0.97			
G	5	Yes	14	130	0.77			
Н	5	No	14	130	0.78			
	H_w = Vertical height of water below the existing ground surface FS = Minimum Factor of Safety							

The results of our preliminary analyses confirmed that slope failure likely occurred under fully saturated slope conditions within the overburden Tn stratum and Marlboro Clay as indicated by the laboratory testing data. Pending additional testing, we recommend that residual soil shear strength from the CIUC test (cohesion, c'= 130 psf, friction angle = 18 degrees) be used for the Marlboro Clay in preliminary evaluations of slope stabilization options. Also the groundwater level should be set at 5 feet or less below grade for design stabilization efforts.

3.2 POTENTIAL CAUSES OF THE EXISTING LANDSLIDE

There are several causes such as, geological, morphological, physical and human activity that can render a site susceptible to landslide and ground movements. When such conditions exist, only one trigger is needed to cause the slope to fail/slide. Trigger is an external stimulus such as intense rainfall and storm water infiltration, earthquake shaking, volcanic eruption, storm waves, or rapid stream erosion that caused a near-immediate response in the form of a landslide by rapidly increasing the imposed stresses or by reducing the strength of slope materials due to significant pore pressure developments within saturated soils.

Based on our preliminary site evaluations and analysis and our review of historic information, the geology of the site, in particular the presence of the Marlboro Clay, made it susceptible to landslide and ground settlements. The trigger was intense and rapid infiltration of rainfall that occurred prior to the slope failure.

Our post-failure subsurface explorations confirmed that three geologic formations are present at the site. Of particular concern is the Marlboro Clay which is sandwiched between the upper Nanjemoy and the lower Aquia formations. Historic information (Pomeroy, 1988, *Map Showing Landslide Susceptibility in Maryland, USGS Miscellaneous Field Studies Map MF-2048*) suggests that Marlboro Clay is one of the Coastal Plain geologic formations highly susceptible to slope failures. Localized and mass ground movements associated with slumps and earthflows are known to be associated with Marlboro Clay with numerous slope failures having occurred in south-western and east-central Prince George's County.

During wet periods as rainfall percolates downward through the overlying permeable sandy and silty soils, it encounters the relatively impermeable Marlboro Clay layer. The microstructure of Marlboro clay makes it difficult for water to infiltrate. Thus, infiltrated water will move primarily along the surfaces of the clay layers. Over time, this water may gradually dissipate with little easing of the pore-pressures and causing little or no slope movements. However, during the recent intense and rapid rainfall recorded at the project site, the infiltrated water was not able to quickly dissipate in the Marlboro Clay and generated massive pore-pressure built up in the saturated sediments. These high pore pressures resulted in shear

strength degradation and creating weak subsurface zones with significant reduction in the frictional resistance along the contacts between the saturated soil and the Marlboro Clay. This condition produced new slide surfaces and potentially regenerated existing failure planes leading to the on-going slope failures and landslide at Piscataway Drive.

As depicted on the Subsurface Profiles Figures 4A, 4B and 4C (Appendix A), we have estimated approximate depths of the landslide and slope failure planes based on the test borings and CPT soundings and the residual strengths from laboratory testing. Our visual examination of extracted undisturbed Shelby tube sample ST-1 from boring B-15 provided evidence of a near horizontal failure plane between depths of 23.2 and 23.6 feet bgs, corresponding to approximate El. 85 (See Figure No. 5 in Appendix A). In addition, during drilling at boring B-17, we encountered loss of drilling fluid mud between depth of 25 and 26 feet bgs (approximate El. 85). This may be indicative of a failure plane.

4.0 GEOTECHNICAL RECOMMENDATIONS

4.1 GENERAL

The material within the landslide area has been weakened by the movement of soil mass and has thus lost some amount of shear strength. Also, our test results indicate that pore-pressures have not dissipated, hence, the continual recorded movement. Furthermore, with lots of crack openings within the site, infiltration of water will generate more pore-pressure and further destabilizing the slopes and causing more movement. Thus, the failed slopes have to be repaired immediately.

4.2 SLOPE STABILIZATION OPTIONS

To stabilize the failed slopes, KCI examined several methods and have performed preliminary analyses on three. We are proposing three preliminary alternatives for stabilization of the failed slopes and landslide areas at the project site as presented in Table 4-1. The conceptual designs of the stabilization alternatives are also provided.

As discussed previously, the major geotechnical issue relates the presence of saturated overburden soils overlying the impermeable Marlboro Clay which is known to be susceptible to landslides and slope failures. The interface between the overburden soils and clay strata loses significant frictional resistance when subjected to undrained conditions due to water infiltration leading to pore pressure build-up. The resulting loss of shear strength indicates that there is insufficient resistance along the interface to resist driving forces thus leading to slope instability.

In order to stabilize the slope and mitigate ground movements, measures should be taken to provide additional resistance and reduce slope driving forces risk to minimize the risk to public properties and life. Note that the proposed slope stabilization schemes are designed to stabilize the upper slope portions above Piscataway Drive roadway and protect the roadway. Note that we did not provide stabilization for

the slope portion further downhill toward the river due to the anticipated lower risk to public properties and lives.

Table 4.1: Summary of Proposed Preliminary Slope Stabilization Options						
Option	Grade & Backfill	Structural Element Support				
1	Backfill slopes (3H:1V) above roadway and support using an 8-foot high soldier-lagging wall	Drilled Shaft Foundation and Micropile (Mini-pile) Anchors				
2	Limited Slope Regrading	Drilled Shaft and Micropile				
3	Limited Slope Regrading	Micropile				

Option 1: This alternative includes a combination of ground stabilization partial backfill and mid-slope stabilization and protection. This method involves the installation of two rows of drilled shaft foundations along both sides of the Piscataway Drive, a retaining wall with backfill, and two rows of micropiles (mini-piles) near the existing head scarp. These reinforcements will be extended beyond the failure surfaces. This stabilization is associated with the installation of structural elements with high strength, which introduce forces to oppose movement and support the sliding mass, resulting in stabilization of the landslide. Partial slope backfilling supported with a retaining wall along the roadway to stabilize the toe of slope. We have provided details of the conceptual design on Figure D-9 in Appendix D.

Option 2: This alternate involves ground stabilization using drilled shafts along the roadway and slope reinforcement using micropiles along the entire western side to reinforce the failed slopes with limited regrading. On the eastern slopes, we recommend one row drilled shafts installed beyond the failure surface and embedded in Ta Stratum. We have provided details of the conceptual design on Figure D-10 in Appendix D.

Option 3: This alternate is similar to Option 2; however, we use only micropiles for both ground stabilization and reinforcement with limited regrading. The method involves the installation of micropiles throughout the slopes on both sides of Piscataway Drive. The mini piles will be extended beyond the failure surface to a minimum depth of 50 feet into Ta Stratum. We have provided details of the conceptual design on Figure D-11 in Appendix D.

Our analyses indicate that each of the options will adequately stabilize the slopes and mitigate additional movements within the vicinity of improvement. However, the drilling and grouting equipment used for micropile installation is relatively small and can be mobilized in constrained and restrictive areas that would prohibit the entry of conventional heavy drilled shaft-installation equipment. In addition, micropile installation will not be impacted by overhead power lines or other obstructions as are conventional drilled shaft systems. The equipment can be mobilized up steep slopes and in remote locations. Also, drilling and grouting procedures associated with micropile installations will not cause significant site disturbance or damage to adjacent existing structures and buried utility mains when proper drilling and grouting procedures are used.

We anticipate that the resulting ground movements indicated by the inclinometer readings will have significant implications for the slope rehabilitation options. Therefore, we will revise the proposed stabilization options accordingly, and recommend that additional detail analyses and design, constructability evaluations and cost analyses be performed for each option as part of the final design purposes.

4.3 UTILITY COORDINATION AND RECONSTRUCTION RECOMMENDATIONS

The Utility Coordination efforts should continue and should include meeting and talking with each utility company to discuss the impacts to their facilities and potential mediation once the slope is stabilized.

WSSC Facilities: The existing eight-inch Ductile Iron Pipe (DIP) water main (12/20/02 Contract) and the eight-inch Concrete Sanitary Line (6/1/70 Built date) will need to be replaced within the proposed length

of the roadway reconstruction (approximately 1,500 linear feet). KCI recommends that both lines be replaced within the existing footprint location in relation to the existing roadway. Prior to the soil failure the water and sanitary house connections ran under the failing slope; these connections collapsed during the failure event. KCI recommends that after the soil stabilization the replacement design should incorporate the use of a carrier pipe. A design will avoid the need to have the services running through the selected stabilized slope treatment.

KCI recommends the proposed water main and sanitary sewer replacement work be performed under the same construction contract.

Electric, Cable TV (CATV) and Telephone Facilities: PEPCO previously maintained a pole line along the southern edge of paving of Piscataway Drive which carried a single phase primary electric cables as well as third parties; COMCAST and Verizon cables. Temporarily the electric line has been de-energized and picked up from the broken poles and lifted to avoid danger to the crews working in the area. PEPCO is evaluating a temporary and permanent solution based upon the method and implementation of the slope stabilization.

Initially, it is anticipated that the impacted single phase pole line be reconstructed in a similar alignment and fashion as the system prior to the slope failure. The downstream and upstream poles should be evaluated in relation for vertical lift and tension impact sustained during the event and change pending line and grade. KCI recommends the collapsed service pole which was carrying the electric, CATV and telephone underground services be relocated along the common driveway of the impacted properties to avoid services running through the selected stabilized slope treatment.

4.4 ENVIRONMENTAL COORDINATION

On May 12, 2014, KCI performed wetland delineation within the vicinity of Piscataway Drive in Fort Washington, Maryland. KCI identified one palustrine forested wetland at the base of the slope below Piscataway Drive, as well as two associated stream channels, designated intermittent and perennial, respectively. KCI contacted the Maryland Department of the Environment (MDE) and the US Army Corps of Engineers on May 16, 2014 and the agencies concurred that the work constitutes an emergency.

MDE specified that if any access through regulated resources is needed in order to complete the repairs, a Joint Permit Application (JPA) must be submitted within 30 days. Impacts to wetlands and waterways should be minimized to the amount necessary to repair the slope. KCI contacted the Chesapeake Critical Areas Commission (CAC) on May 15, 2014 to make them aware of the ongoing emergency activities. A CAC letter will be prepared during final design.

4.5 ROADWAY RECONSTRUCTION AFTER THE SLOPE STABILIZATION PROCESS HAS BEEN COMPLETED

Utilizing the topographic survey, KCI will develop a baseline that will closely match the centerline of the existing roadway. This baseline will serve as the centerline for the reconstructed roadway. KCI will generate and evaluate the existing roadway profile since portions of the roadway have settled significantly. We will generate a revised roadway profile for the posted 25 mph per American Association of State Highway and Transportation Officials (AASHTO) – A policy on Geometric Design of Highways and Streets (Chapter 5: Local Roads and Streets). KCI will develop a typical Rural Secondary Residential roadway section for a 22-foot wide crowned roadway with 2% roadway cross-slopes. We will vary roadside grading to closely match the condition prior to the slope and roadway failure to reduce impacts to the existing residences. KCI will generate existing ground cross-sections with the proposed new roadway section superimposed to develop grading limits and earthwork requirements. We will place impermeable side ditches where necessary to divert the sheet flow of water away from the roadway into existing or proposed cross pipes.

KCI anticipates that during construction, once the slopes are stabilized (and all major construction equipment is no longer required to utilize the existing roadway), the existing pavement will be thoroughly broken up, scarified or removed. The embankment and subgrade will be placed along with any ditch and required cross pipes (existing cross pipes shall be cleaned). We will use the Prince George's County pavement section, or provide a recommended pavement design including a six-inch underdrain along both roadway edges. The underdrain will be outlet to the fill slopes. Guardrail will be required along the east side of the roadway for most if not the entire length of the reconstruction. Curbing may also be placed

along the east side of the roadway to divert water away from the fill slopes to curb openings and stabilized slope channels.

5.0 STRATEGY FOR MOVING FORWARD

This report provides a preliminary concept design prepared after reviewing the feasibility of several options. We have developed the recommended concept to an approximate 20% design stage. KCI will now work with Prince George's County DPW&T to consider option for moving forward with the recommendation contained in this report.

6.0 BASIS OF RECOMMENDATIONS

General

1. This report has been prepared to aid in the evaluation for the proposed construction described in this report. Adequate recommendations have been provided to serve as a basis for design and preparation of plans and specifications. The opinions, conclusions, and recommendations contained in this report are based upon our professional judgment and generally accepted principles of geotechnical engineering. Inherent to these are the assumptions that the earthwork and foundation construction should be monitored and tested under the guidance of a geotechnical engineer licensed in the State of Maryland or his representative.

Explorations

- 2. The analyses and recommendations provided are, of necessity, based on project information available at the time of the actual writing of the report, including existing site, surface and subsurface conditions that existed at the time the exploratory borings were drilled. Further assumption has been made that the limited exploratory borings, in relation to both the lateral extent of the site and to depth, are representative of general conditions across the site. The nature and extent of variations between these explorations may not become evident until further explorations and construction. If variations from anticipated conditions then appear evident, it will be necessary to revise the recommendations in this report.
- 3. The soil strata described in the text and indicated on the subsurface profiles are intended to convey generalized trends in subsurface conditions. Boundaries between strata are approximate and idealized, and developed by interpretations of widely spaced explorations and sampling; actual soils transitions are probably more erratic. Refer to boring logs for specific information.
- 4. Groundwater level readings have been made in the drill holes at times and under conditions stated on the boring logs. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the ground water may occur due to variations in rainfall, temperature, and other factors occurring since the time measurements were made.

Review

5. This report has been prepared based on plans and description of the proposed construction cited herein. In the event that any changes in the nature, design or location of the proposed construction, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by KCI. We recommend that KCI be provided the opportunity for a general review of design and specifications so that our recommendations may be properly interpreted and implemented in the design specifications.

Uses of Report

- 6. This final report has been prepared for the exclusive use of Prince Georges County Government and other members of the design team for specific application of the Engineering Design services for the **Piscataway Drive Slope Failure**, Fort Washington, Maryland. Our professional services were performed in accordance with generally accepted soil and foundation engineering principles and practices; no other warranty, expressed or implied, is made. KCI assumes no responsibility for interpretations made by others on the work performed by KCI.
- 7. In the event the County proceeds forward with construction, this report is for design purposes only and is not sufficient to prepare an accurate bid. Contractors wishing a copy of the report may secure it with the understanding that its scope is limited to design considerations only. We recommend that this report be made available in its entirety including attachments and appendices to contractors for informational purposes only. The project plans or specifications should include the following note:

A geotechnical report has been prepared for this project by KCI Technologies, Inc. This report is for informational purposes only and shall not be considered as part of the contract documents. The opinions and conclusions of KCI represent our interpretation of the subsurface conditions and the planned construction at the time of the report preparation.

m:\2010\07100627.w\geotechnical\report\preliminary ger piscataway drive slope failure.docx

FIGURES: SITE LOCATIONS PLAN, BORING LOCATION PLAN, SUBSURFACE PROFILES, AND ROADWAY PLANS AND CROSS SECTIONS

Appendix A

16570-0 PISCATANNY SLOPE FAILURE CUTRIAX B-15/5T-1 22'0" - 24'0"

Planners Scientists Construction Managers

Engineers

936 Ridgebrook Rd. Sparks, MD 21152 410-316-7800 | Fax 410 POTENTIAL FAILURE PLANE IN BORING B-15

Figure No.

5

PISCATAWAY DRIVE SLOPE FAILURE

FORT WASHINGTON, PRINCE GEORGES COUNTY, MARYLAND

0					
ks, MD 21152	DRAWN BY	APPROVED BY	SCALE	DATE	KCI JOB NUMBER
316-7800 Fax 4 10-316-7817	LSG	KA	NTS	MAY 2014	07100627.W

TEST BORING LOGS & CPT SOUNDING RESULTS FIELD OPERATIONS PROCEDURES, SLOPE AND WATER-LEVEL MONITORING PROCEDURES

Appendix B

			PROJE PROJE	F	ailur	es		Slope		test b E	ORING 3-01	g log)
	TECHNOL	OGIES	Surface	Eleva	tion	69.6 [,]	1 (ft)				SHE	ET <u>1</u>	OF _ 2
Driller: Ron/CenKen	Method: HSA	Casing Ler 59 ft	ngth:	Date	Begu	ın:	5/6/	2014	Gro	undwat	er Lev	vels (fo	eet)
CI Representativ		Casing Dia	meter:			pleted:					ur: <u>57.</u> ; irs:		
		3.25 ATION						AMPLES		PLASTIC		LIQU	ID
(#) HITA	AND REMAR	R KS R EXPLANAT		ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ	N-COUN	3rd 6" 4th 6"	-	 — ▲ — → — → — →	(%) ppf)	400
- Moist, lig	HALT mpled As: ght brown, loose, S Asphalt fragments		trace			S-1 S-2		7-6-4 N = 10 REC=12 3-4-6-5 N = 10	<u>2</u> "	20	40 6	0 80	100
⁵ – Moist, ta – trace Gr	e FILL Sampled As: an and brown, stiff, avel, decomposed	Sandy SIL	Τ,		- 65 -	S-3		REC=12 4-3-4-6 N = 7 REC=18	2" 5 3"	•			
	s at 6' (ML) ght brown to gray, s	stiff, Sandy	SILT			S-4	Å	2-5-4-4 N = 9 REC=12					
- Moist, d	ark brown, stiff, Sai	ndy SILT (I	ML)		- 60 -	S-5		7-5-8-7 N = 13					+
Sand (C	eddish brown, stiff, L) eddish brown, stiff,					S-6		REC=12 3-6-9-1 N = 15 REC=12	0	•			
- 15 — -					- 55 -	S-7		4-6-7-8 N = 13 REC=12		• 1			
 Moist, b 20 – SAND, 1 	rown, loose to med trace Gravel and Mi	ium dense ica (SM)	, Silty		- 50 -	S-8		4-4-5-5 N = 9 REC=12		•			20
- - 25 - -					- 45 -	S-9		4-3-5-6 N = 8 REC=24		•			25
- Moist, g 30 - (SM) -	ray, loose, Silty SA	ND, trace I	Mica		- 40 -	S-10		4-3-4-5 N = 7 REC=24					30
- - 35 - -	es mottled				- 35 -	S-11		6-6-7-7 N = 13 REC=24					

		KC		PROJE PROJE	F	ailur	es		Slope	T	EST B	oring 8-01	LOG	
		TECHNOLO	OGIES	Surface	Eleva	ation	69.6 [,]	l (ft))		_	SHEE	<u> </u>	DF _ 2 _
Driller:	CenKen	Method: HSA	Casing Le 59 ft	ngth:	Date	e Begi	ın:	5/6/	2014	Grou	undwat	er Lev	els (fe	et)
KCI Re	epresentative:	Hammer Type:	Casing Dia	ameter:						-		r: <u> </u>		
TA	50	Automatic	3.25				pleted:		ZU14 SAMPLES		PLASTIC	M.C.	— LIQUII	<u>ר</u>
(Ħ)	30	AND REMAR)Q	(#)			N-COU			- - -		
DEPTH		SYMBOL SHEET FOR DLS AND ABBREVIA	R EXPLANA		ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"		□FINES(●SPT (bp		
	Moist, gray (SM)	/, loose, Silty SAN	ND, trace	Mica		- 30 -	-		RQD		20	40 60	80	100
-40 - 	Moist, brow Gravel and	vn, loose, Silty SA Mica (SM)	AND, trace	e		- 30 -	S-12	Å	6-7-7-1 N = 14 REC=24	4				
 - 45 	- wet					- 25 -	S-13	X	3-5-3-6 N = 8 REC=2-					
-50		c gray, stiff to hard Clay, with Shells				- 20 -	S-14	\times	3-5-100/ N = 10 REC=1	5			*	50
 - 55 						- 15 -	S-15		13-13-12 N = 25 REC=2-	5	•			+ +
_⊻ _ - 60 						- 10 -	S-16	X	5-6-9-5 N = 15 REC=24	5	•			-
	Borin	g terminated at 6	1 ft. bgs			-	-							ļ
 65 	43.8 feet b	water encountere gs during drilling t at completion of	on 5/6/14	, and		-5-								+ + 65 + +
 - 70 	2) Cave-in	occured at 13.2 f d at 14.3 feet bgs		after		- 0 -								+ 70
 - 75						5 -	-							- - 75

		KC		PROJE PROJE	F	ailur	es		Slope	-	TEST BO	DRING - 02	G LOG	
		TECHNOL		Surface	Eleva	tion	74.38	8 (ft)					ET <u>1</u> C	
Driller: Ron	/CenKen	Method: HSA	Casing Ler 59 ft	ngth:	Date	Begu	ın:	5/7/2	2014	Gro	undwate		-	et)
KCI R	epresentative:	Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/9/2	2014			:: <u>11.1</u> 5:	_	
£	SO	L CLASSIFIC	ATION		7			S	AMPLES		PLASTIC	M.C.)
DEPTH (ft)		AND REMAR	R EXPLANAT		ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ	N-COUN 54 0 REC RQD	3rd 6" 1 4th 6"		■ FINES ■ SPT (bp 40 60	(%) of)	100
	6" ASPHA FILL Samp Moist, gray GRAVEL (oled As: /, medium dense	, Sandy	/			S-1	X	46-19-1 N = 32 10-10-9- N = 19	-6				+++++++++++++++++++++++++++++++++++++++
 - 5 -		lish brown, loose fine Gravel (SM)		ID,		- 70 -	S-2	X	REC=12 4-3-3-3 N = 6 REC=12 3-3-5-4	2"				
						- 65 -	S-3 S-4	$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $	N = 8 REC=12 3-4-5-6 N = 9	2"				
10 -⊻ - 	Wet, brow	n, loose, GRAVE	L (GP)				S-5	$\left \right $	REC=12 5-5-4-3 N = 9 REC=12 4-5-3-3	2"	•			-+10 + +
 - 15 	with fine G	ed gray, medium		. /		- 60 -	S-6 S-7	X	4-3-3-3 N = 8 REC=12 6-3-5-6 N = 8 REC=12	2"				
 - 20 	Wet, light l	prown, stiff, Sand	Iy SILT (MI	_)		- 55 -	S-8	X	3-4-6-7 N = 10 REC=18		•			
 25 		brown, loose to), with Mica and				- 50 -	S-9	X	3-4-5-6 N = 9 REC=18		•			- 25
 - 30 	- - - -					- 45 -	S-10		3-5-6-8 N = 11 REC=18					
- 20 - 25 		k gray, medium d), with Shell fragi				- 40 -	S-11		6-6-8-9 N = 14 REC=18					

		K		PROJE PROJE	F	ailur	es		Slope		TEST	вог В- (LOC	6
		TECHNOI	LOGIES	Surface	e Eleva	ation	74.3	8 (ft))				SHEE	T <u>2</u>	OF _2 _
Driller:	CenKen	Method: HSA	Casing Len	gth:	Date	e Begu	ın:	5/7/	2014	Gro	undw	ater	Leve	els (f	eet)
KCI Re	epresentative:	Hammer Type:	Casing Diar	neter:								hour: _ nours: _		_	
TA		Automatic					pleted:				PLAST		Л.C.	- LIQL	
(#)	50	AND REMA			∖D	(#)		3		NT					JD
EPTH					OLO	ELEV (IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"		□F	INES (%)	
DEF		SYMBOL SHEET FO OLS AND ABBREV			ГІТНОГОСУ		D	ΤY	୍ଙ୍ୟ REC RQD	ις 1 4	20		PT (bp	f) 80	100
 40 	Moist, dark Silty SANE	c gray, medium), with Shell fraç	dense to de gments (SM)	nse,		- 35 -	S-12		5-6-7-7 N = 13 REC=18	;	•				40
 - 45 - 						- 30 -	S-13	\square	4-6-6-8 N = 12 REC=18	2					45
 - 50 						- 25 -	S-14		2-2-2-2 N=4 REC=18						50
 	- With cerr	nented Clay				- 20 -	S-15	X	100/5.8 REC=5						- - - 55 -
						- 15 -	S-16		3-4-13- N = 17 REC=18	7					60
	Borin	ng terminated at	61 ft. bgs				-								ļ
	bgs during feet bgs af	ncountered in a drilling on 5/7/1 fter drilling on 5/	14, and at 31 9/14	.2		- 10 -	-								- 65
	bgs after p 2) Cave-in hours after 3) 1-1/4" P welll (OW- 5-foot offse 4) Ground	water encounter oulling augers or occurred at 21 r drilling. PVC groundwate 1) installed on 5 et from B-2 to a water encounter 7 feet bgs after	n 5/9/14. feet bgs 48 er observatio 5/13/14 at a depth of 50 rd in observa	n feet.		- 5 -	-								- - - - - - - - - - - - - - - - - - -
-75 -						-0-	-								-75

		KC	I	PROJE PROJE	F	ailur	es		Slope	•	TEST BO	DRING 3-03	LOG
		TECHNOLO		Surface	Eleva	ition	79.6	6 (ft))	•			
	/Hillis Carne		Casing Ler 58.5 ft	igtn:	Date	e Begu	ın:	5/8/	2014	Gro			els (feet)
KCI Re	epresentative:	Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/8/	2014			r: <u>42</u> s: <u>10</u>	
DEPTH (ft)	SEE KEY S'	L CLASSIFIC AND REMAR	KS R EXPLANAT		ГІТНОГОСУ	ELEV (ft)	IDNET	TYPE	AMPLES N-COUN 5 ug 0: 7 st 0: 8 REC RQD	3rd 6" 1 4th 6"		M.C. — ▲— – □ FINES (■ SPT (bp 40 60	%) of)
 - 5- 	with Gravel Moist, olive		C) n, reddish]		- 75 -	S-1 S-2 S-3		2-2-3 N = 5 REC=8 1-3-3-2 N = 6 REC=12 1-2-2-3 N = 4 REC=11	" 2" 3 ["			5
 - 40 	stiff, CLĂY,	brown to brown, with Mica (CL)				- 70 -	S-4 S-5 S-6		$2-3-4-5 \\ N = 7 \\ REC=12 \\ 1-3-3-5 \\ N = 6 \\ 1-2-1-3 \\ N = 3 \\ REC=8 \\$	2" 5 3	●	4	10
 - 15 - 	Moist, light (ML)	gray, medium sti	iff, Sandy	SILI		- 65 -	S-7 S-8 S-9		2-3-4-5 N = 7 REC=20 2-3-4-5 N = 7 REC=20 2-4-4-5 N = 8 N = 8 N = 8 N = 8 N = 8 N = 7 N = 8 N = 8 N = 7 N = 8 N = 9 N = 9	5)" 5)"	•		15
	Moist, olive Silty SAND	gray, loose to m (SM)	edium der	nse,		- 60 -	S-10 S-11 S-12 S-13 S-14		$\begin{array}{c} 3-4-5-5\\ N=9\\ REC=22\\ 3-5-6-6\\ N=11\\ REC=21\\ 3-5-5-6\\ N=10\\ REC=24\\ 4-5-6-7\\ N=11\\ REC=22\\ 3-5-6-6\\ N=11\\ \end{array}$	2" 5 [" 5] 4" 7 2"	•		20
	Moist, olive stiff, Sandy	gray to brown, s SILT (ML)	oft to med	lium		- 50 -	S-15 S-16 S-17 S-18		REC=18 3-6-6-7 N = 12 REC=24 4-5-6-6 N = 11 REC=24 2-3-3-4 N = 6 REC=20 1-1-3-4 N = 4	3" 7 4" 5 4" 4 4" 4 7" 4			30
	with Shells	. ,	-				S-19		REC=22 1-2-4-5 N = 6 REC=24	5 4"			
	Moist, brow Shell fragm	n, hard, cemente ents (ML)	ed SILT, w	rith		- 40 -	S-20	X	4-50/5'' N = 100	•			

		KC		PROJE PROJE	F	ailur	es		Slope	TEST BORING LOG B-03
		TECHNOL		Surface	Eleva	tion	79.60	6 (ft))	SHEET 2 OF 2
-	//Hillis Carne		Casing Ler 58.5 ft	-	Date	Begu	ın:	5/8/2	2014	Groundwater Levels (feet) 0 hour:42 ⊻
KCI Re	epresentative:	Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/8/2	2014	$\frac{10011}{24} = \frac{10}{24}$
(ft)	SO	IL CLASSIFIC	ATION		75			S	AMPLES	
DEPTH (SEE KEY S	AND REMAR	R EXPLANA		ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ	AUCO-N 5 d 0 5 J 3 7 J 3	[™] © [™] © [™] □ FINES (%)
 -⊻ - 	Shell fragm								REC=8	
 - 45 	Moist, gray Shells (ML) - with ceme	, very stiff, Sand) ented Silt	y SILT, wit	in		- 35 -	S-21	X	7-8-8 N = 16 REC=8	6 T
 50 	Moist, olive SAND, with	e gray, medium c n Shells (SM)	lense, Silty	/		- 30 -	S-22	\times	3-5-7 N = 12 REC=24	2
 - 55 	Moist, dark SAND, with	gray, medium d Shells (SM)	ense, Silty	,		- 25 -	S-23	X	4-6-8 N = 14 REC=24	4
 - 60 	Wet, olive g Sandy SIL	gray and brown, I, with Shells (M	very stiff, L)			- 20 -	S-24	X	6-9-13 N = 22 REC=14	
	•	terminated at 60	0.5 ft. bgs				-			
- 65 - 65	48 ft bgs du drilling.	vater encountere uring drilling, and	d 42 ft bgs	after		- 15 -	•			
 - 70	48 hrs after 3) Cave-in	vater encountere r drilling. occurred at 48 fi 17.6 ft bgs 48 h	t bgs after	•		- 10 -	-			
- 70						- 5 -	-			
						- 0 -	-			

		KC		PROJE PROJE	F	ailur	es		Slope			BORING B-04		ì
		TECHNOL		Surface	Eleva	tion	97.61	l (ft)					ET <u>1</u>	
Driller: James/	CenKen	Method: HSA	Casing Lei 59 ft	ngth:	Date	Begu	ın:	5/9/2	2014	Gro		ter Lev	•	eet)
KCI Repre	esentative:	Hammer Type: Automatic	Casing Dia	meter:	Date	Com	oleted:	5/9/2	2014			our: <u>59</u> urs: <u>34</u> .		
	SO								AMPLES		PLASTIC			ID
DEPTH (ft)		AND REMAR	R EXPLANA		ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	NUCO-N 5 u 0 5 u 0 7 ST 7 7 8 7 8 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 7 8	3rd 6" 1 4th 6"	20	▲- · □ FINES ● SPT (b 40 6	(%) opf)	100
			ium dense,	, Silty		- 95 -	S-1 S-2	X	8-7-11 N = 18 REC=16 9-2-9-4	; ;;" ;				-
- N	loist, gray	to reddish brow , trace Sand (Cl	vn, medium _)	ı stiff,			S-3	\square	N = 11 REC=12 3-3-5-6 N = 8	<u>2</u> "				
		lish brown, med e fine gray Sano		ean		- 90 -	S-4		REC=16 2-3-5-4 N = 8	1				
- 10 - -							ST-1 S-5	\mathbf{X}	REC=21 3-6-7-9 N = 13)	•			
-						- 85 -	S-6		REC=18 4-5-8-8 N = 13 REC=24	3" }				+
		y, brown, mediur	n stiff, Fat	CLAY,			S-7 S-8	$\left \right\rangle$	2-3-4-5 N = 7 REC=24 2-3-4-5	4" 5				
- N (N	-	ray Sand (CH) gray, medium s	stiff, Sandy	SILT		- 80 -	S-9	$\left \right\rangle$	N = 7 REC=24 3-4-5-5 N = 9	4" 5				+
	loist, gray AND (SM	v to light brown,)	loose, Silty			- 75 -			REC=24	+"				
	loist, light ace Mica	gray, medium s (ML)	stiff, Sandy	SILT,		- 70 -	S-10		2-2-4-4 N = 6 REC=18	-	•			
- 30 - - - -						- 65 -	S-11		3-3-4-5 N = 7 REC=18					
		gray, medium on Shells and Mic		1		- 60 -	S-12		7-8-11-1 N = 19 REC=18)				

		KC		PROJE PROJE	F	ailur	es		-	-	TEST B	ORING 3-04	S LOG	j
		TECHNOL		Surface	Eleva	tion	97.6 [,]	1 (ft)						OF _2 _
Driller: Jame	es/CenKen	Method: HSA	Casing Ler 59 ft	ngth:	Date	Begu	ın:	5/9/2	2014	Gro	undwat		•	eet)
KCI Re	epresentative:	Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/9/2	2014			r: <u>59</u> s: <u>34.3</u>		
$\overline{\mathbf{x}}$	SO	IL CLASSIFIC			7			S	AMPLES		PLASTIC	M.C.	LIQU	ID
DEPTH (ft)		AND REMAR	R EXPLANAT		LITHOLOGY	ELEV (ft)	IDNET	ТҮРЕ	AUOD-N 54 0 DER DER	3rd 6" _1 4th 6"		□ FINES ● SPT (b 40 60	(%) pf)	100
 	Moist, dark SAND, with	gray, medium d h Shells and Mica	ense, Silty a (SM)	1		- 55 -	S-13		7-9-11-1 N = 20 REC=24)	•			- - - - - - 45
	Moist olive	e gray, stiff to hai	rd Sandy 9			- 50 -	S-14	$\left \right\rangle$	5-7-8-1 N = 15 REC=24	;				
50 	with Shells	and Mica (ML)	u, Sanuy	JIL I,		 - 45 -	- S-15		3-4-5-5 N = 9 REC=24					50
55 	- cemented	d Sand Lenses				 - 40 -	S-16		6-100/5 N = 100 REC=11	0 ["				55
[∞] — 60 —	cemented	d soils at bottom		/	+		S-17	\boxtimes	13-100/2 N = 100 REC=8	0				
	Boring	terminated at 5	9.6 ft. bgs			- 35 - - 35 -			KLC-6					
	59 ft bgs at 2) Groundv 96 hours at 3) Cave-in	water encountere fter drilling. water encountere fter pulling auge occurred at 48.5 I 36.3 ft bgs 96 h	ed at 34.3fl rs. 5 ft bgs afte	t bgs er		- 30 -								65 - - - - 70 -
						- 25 -								-75
						- 20 - 								

	KC		PROJE PROJE	F	ailure	es		-			bt lo 8-06	G	
	TECHNOL		Surface	Eleva	tion	112.	88 (fi	t)				ET <u>1</u> OF _	
Driller: James/CenKen	Method: Mud Rotary	Casing Leng	gth:	Date	Begu	n:	5/9/2	2014	Gro			els (feet))
KCI Representative:		Casing Diar 5	neter:	Date	Com	oleted:	5/11	/2014			ir: `s:		
SC		-						AMPLES		PLASTIC	M.C.	LIQUID	
(#) HI day See Key	AND REMAR SYMBOL SHEET FOF BOLS AND ABBREVIA	KS R EXPLANATI		ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	N-COUN مالي	3rd 6" 1 4th 6"		 FINES SPT (b) 40 60 	(%) pf)	<u> </u>
Moist, bro	own, medium dens el (SM)	e, SAND, S	Silt,		- 110-	S-1 S-2	X	6-6-9 N = 15 REC=18 9-11-8- N = 19	3" 7				
⁵ – Probable medium c - (SC)	Fill Sampled As: N Jense, Clayey SAN	Moist, brow ND with Gra	n, avel			S-3 S-4		REC=18 5-5-6-5 N = 11 REC=18 3-1-2-2	5 3" 2				5
-	own, soft, SILT, tra		/L)		- 10 5 	-		N = 3 REC=12 1-1-2-2 N = 3 REC=18	2" 2	●			10
vvet, redc 	lish brown, stiff, C	LAY (CL)			 - 100-	S-7 S-8	$\left \right\rangle$	1-1-2-4 N = 3 REC=18 1-1-2-3 N = 3	3" 3	 ● 			
15 – Moist, gra	ay, medium stiff to	stiff, CLAY	(CL)			S-9		REC=22 2-3-5-6 N = 8 REC=22	<u>2</u> " 5 <u>2</u> "				15
-					- 95 - - 95 -	S-10 S-11	$\left \right\rangle$	2-3-6-9 N = 9 REC=22 2-4-6-8 N = 10	2" 3				
20 — _ _						S-12		REC=22 2-3-4-5 N = 7 2-3-4-5	5	•			20
- - 25 —					- 90 - 	S-13 S-14	$\left \right\rangle$	N = 7 REC=24 1-2-4-4 N = 6	1'' 1				25
-					- 85 -	S-15 S-16		2-4-5-8 N = 9 REC=24 2-3-4-7	1'' 7				
30						S-10		N = 7 REC=24 1-2-4-5 N = 6 REC=24	4" 5				30
35 - Maiat ali			- u c ¹		- 80 -	S-18 S-19	$\left \right\rangle$	2-3-4-6 N = 7 REC=24 2-3-6-7	5 4''' 7				35
Moist, Oliv	ve gray to dark gra LT with mica and \$ L)	iy, stiff to hi Silty SAND	aro,		- 75 -	S-20		N = 9 REC=24 4-7-11-1 N = 18 REC=22	4" 8				
-						S-21		5-8-9					

		KC		PROJE PROJE	F	ailur	es		Slope			вт lo 8-06	G	
		TECHNOL		Surface	Eleva	ation	112.8	38 (f	t)			-		OF <u>3</u>
Driller: Jame	es/CenKen	Method: Mud Rotary	Casing Lei 79 ft	ngth:	Date	e Begu	ın:	5/9/2	2014	Gro	undwate		-	eet)
	presentative:	Hammer Type: Automatic	Casing Dia	meter:	Date	e Com	oleted:	5/11	/2014			r: s:		
	SO		-						AMPLES		PLASTIC		LIQU	ЛD
T (ff		AND REMAR	RKS		0 0	(ff)	F		N-COUN				-	
DEPTH		YMBOL SHEET FO DLS AND ABBREVIA			ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	REC	3rd 6" 4th 6"		□FINES ●SPT (b		
	Moist, olive	e gray to dark gra	ay, stiff to I	nard,					RQD N = 17		20	40 60) 80	100
_	Sandy SIL layers (ML)	T with mica and	Silty SANE)					REC=18	5				‡
_						- 70 -								+
45 -							S-22		4-7-10					45
40 -								\square	N = 17 REC=18					45
-														+
_						- 65 -								
50 —							S-23		9-14-18 N = 32				_	50
-									REC=18					
						- 60 -								ļĮ
-							S-24	\square	10-15-2	0				+
55 —							5-24	А	N = 35 REC=18					55
_														
-						- 55 -								†
60 -							S-25	\square	6-12-15 N = 27	5				60
-								\square	REC=18					+
_						- 50 -								
+	Moist olive	e gray, Silty SAN	D with sh	alle	· . · .			\square	5-7-10					
65 —	and mica (SM)	D, with one				S-26	А	N = 17 REC=18					65
						·[NEC IC	,				
-						- 45 -								+
- 70 -							S-27		3-6-9					70
-								H	N = 15 REC=17	, . .				
-														+
						40 -						\mathbb{N}		
75 —							S-28	\square	14-23-22 N = 52			+		75
-									REC=18	5''				
						- 35 -						$\left \right $		
-						· .	S-29	$\left \right $	6-8-11					+

		K		PROJE PROJE	Fa	ailure	es		Slope			ST L B-0		
		TECHNOL	.OGIES	Surface	e Eleva	tion	112.	88 (f	t)					_ OF <u>3</u>
Driller:	es/CenKen	Method: Mud Rotary	Casing Le 79 ft	ngth:	Date	Begu	n:	5/9/	2014	Gro	undwa		-	feet)
KCI Re	presentative:	Hammer Type:	Casing Dia	ameter:	Date	Comr	leted.		1/2014			our: urs:		
SS	SO	Automatic				Comp			AMPLES		PLASTIC			UID
(#)	00	AND REMA			LITHOLOGY	(ft)			N-COUN					
EPTH					IOL(ELEV (ft)	IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"				
		SYMBOL SHEET FO				Ш	Ō		← ∾ REC	ω 4	_	● SPT	(bpf)	
								\ge	RQD N = 19)	20	40	60 80	100
									REC=18	3"				
-	Boring	g terminated at 8	30.5 ft. bgs			- 30 -								ļ
-														+
-85	Notes:													-85
	1) Ground	water not record d rotary drilling.	ed in borel	nole										1
_	Inclinor	neter No. IN-4 in	stalled in			- 25 -								
-	borenole to	o a depth of 80.	o teet.											+
90 -														90
_														ļ
-						- 20 -								+
-														
-95														+95
_														+
-						- 15 -								†
100 -														-100
-														+
-														
_						- 10 -								
105 —														-105
-														
_						-5 -								ļ
110 -														-110
						-0-								
115 —														-115
.						5 -								
_														†

		KC		PROJE PROJE	F	ailur	es		•		TEST BO	DRING 3- 07	LOG	
		TECHNOL	OGIES	Surface	Eleva	ition	115.0	01 (fi	t)			SHEE	T_1_OF_	3
Driller:	//Hillis Carne	Method:	Casing Ler 88.5 ft	igth:	Date	e Begu	ın:	5/9/2	2014	Gro	undwate	er Leve	els (feet)	
KCI Re		Hammer Type:	Casing Dia	meter:	Date	Com	pleted:					r: <u>12</u> s: <u>11</u>		
SS	SOI	Automatic	3.25 ATION						AMPLES		PLASTIC			
DEPTH (ft)	SEE KEY S	AND REMAR	RKS R EXPLANAT		ГІТНОГОGY	ELEV (ft)	IDNET	TYPE	N-COUN	3rd 6" 1 4th 6"	 [— -▲— — □ FINES (● SPT (bp 40 60	∽ — — I %) Df)	
	loose, SAN Fragments	led As: ish brown, black D with Gravel a (SP)	nd Asphalt	,			S-1 S-2	X	2-2-1 N = 3 REC=8 2-4-3-3 N = 7 REC=8	3				
- 5 - 	(SM) Moist, redd	ish brown, loose ish brown, stiff, a e Gravel (CL)				- 110	S-3 S-4	$\left \right\rangle$	6-6-4-6 N = 10 REC=6 3-5-6-6 N = 11	5				5
 - 10 - ▼ -	Moist, redd stiff, FAT C	ish brown and g LAY (CH)	ray, mediu	m		- 10 5	- S-5 - S-6		REC=1: 3-4-4-6 N = 8 REC=1: 3-3-3-5 N = 6	5 3 5	• •		+ + + 11	0
_⊻ _ - 15	Moist to we Lean CLAY	t, light gray, soft ′ (CL)	t to medium	n stiff,		- 100	- S-7 - S-8		REC=1: 1-1-2-2 N = 3 REC=2- 1-1-2-2	2				5
- 15 - 	PP = 0.25ts	sf					- S-9	$\left \right\rangle$	N = 3 REC=2- 2-2-2-3 N = 4 REC=2- 2-3-3-3	4 3 4	F	-		5
 20	Wet, light g (CL)	ray, medium stil	ff, Silty CLA	Υ		- 95 -	S-10 S-11	$\left \right\rangle$	N = 6 REC=10 3-4-2-4 N = 6	6 1	•		2	:0
	Moist, light Sandy SILT	gray, medium s 「(ML)	tiff to stiff,				S-12		REC=24 1-3-3-4 N = 6 REC=24 3-4-5-6	4				
25 	Top sample	e is wet and very	y soft			- 90 -	S-13 S-14 S-15	$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $	N = 9 REC=2 4-4-5-6 N = 9 REC=1 2-3-5-7	4 5 9 7				25
30 	Moist, gray PP = 0.25ts	, loose, Silty SA sf	ND (SM)			- 85 -	S-16 S-17		N = 8 REC=2- 2-3-3-4 N = 6 REC=2- 3-3-4-3 N = 7	4 1 4 3	•		30	0,
 35 	Moiet gray	, Lean CLAY (Cl	1)			- 80 -	-		REC=2- 4-4-6-8 N = 10 REC=2- 3-4-4-7	3) 4			3	85
	\PP = 2tsf Moist, olive	gray, stiff to ver shells and mica	ry stiff, San	/ dy			S-19 S-20	$\left \right\rangle$	N = 8 REC=2 4-8-9-1 N = 17	4 2				

		K		PROJE PROJE	F	ailur	es		-		TEST B	oring 3-07	6 LOG	
		TECHNOL	OGIES	Surface	Eleva	tion	115.0	01 (fi	t)			SHE	et 2 (DF <u>3</u>
Driller: Jerry	/Hillis Carne	Method: s HSA	Casing Ler 88.5 ft	ngth:	Date	Begu	ın:	5/9/2	2014	Gro	undwat		•	et)
-		Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/9/	2014			r: <u>12</u> s: <u>11</u>		
DEPTH (ft)	SEE KEY S OF SYMBC	L CLASSIFIC AND REMAF YMBOL SHEET FO DLS AND ABBREVI gray, stiff to ve	REXPLANAT ATIONS BELO	SW.	ГІТНОГОGY	ELEV (ft)	IDNET	TYPE S	REC ROD	3rd 6" 4th 6"		M.C. → → → FINES ● SPT (b 40 60	(%) pf)	100
	SILT, with s	shells and mica	(ML)	luy		- 70 -	S-21 S-22 S-23 S-24 S-25		REC=2 4-7-9-1 N = 16 REC=2 4-6-8-5 N = 14 REC=2 4-7-8-1 N = 15 REC=2 4-6-9-1 N = 15 REC=2 5-8-8-1 N = 16 REC=2	6 4 9 4 4 0 5 4 0 5 4 2 5				- - - 45 - - - - 50 - -
 - 55 - 	Moist, olive Silty SAND	gray, medium o , with mica and	dense to de shells (SM	ense,)		- 60 -	S-26	X	9-16-20 N = 36 REC=1	5		•		+ 55
						- 55 -	S-27	\times	10-15-2 N = 37 REC=1	7		• •		- 60
						- 50 -	S-28	\times	6-10-14 N = 24 REC=1	ŀ	•			+ +
	Moist, olive SILT, with s	gray, very stiff shell fragments	to hard, Sa and mica (ndy ML)		- 45 -	S-29	$\left \right\rangle$	6-8-10 N = 18 REC=1	3				
 						- 40 -	S-30	\times	5-50/3' N = 100 REC=5	0				75
							S-31		10-12-50 N = 112	/5"			>:	>•

		K		PROJE PROJE	F	ailur	es		Slope		TEST	вог В-		LOG	
		TECHNO	LOGIES	Surface	Eleva	ation	115.0	01 (f	t)				SHEE	T <u>3</u>	OF <u>3</u>
Driller: Jerry	//Hillis Carne	Method:	Casing Ler 88.5 ft	ngth:	Date	e Begu	ın:	5/9/	2014	Gro	undw			•	et)
		Hammer Type: Automatic	Casing Dia	meter:	Date	Com	pleted:	5/9/	2014				12 11		
	SO	L CLASSIFI			1.				AMPLES		PLAS1	IC	M.C.	LIQUI	D
H (ff		AND REMA			0 0	(H)			N-COUN		1 ⊢		---	-	
рертн	SEE KEY S	YMBOL SHEET F	OR EXPLANA	ION	ГІТНОГОСУ	ELEV (ft)	IDNET	TYPE	1st 6" 2nd 6"	3rd 6" 4th 6"			INES (' PT (bp		
ä	OF SYMBC	DLS AND ABBRE	IATIONS BEL	OW.					REC RQD		2			80	100
		e gray, very stif shell fragments					-		REC)					-100
		shell hagment		VIL)			-								÷
							S-32		10-12-50						
- 85 -						- 30 -		\square	N = 112 $REC = 9$						85
							-								+
							-								÷
	Moist, olive mica and s	e gray, dense, S hells (SM)	Silty SAND,	with		- 25 -	S-33		17-18-2 N = 39)		•			
							-		REC=1	8					+
	Boring	g terminated a	t 90 ft. bgs												÷
	Notes:						-								÷
95 		ncountered at 2 er after drilling,				- 20 -									+95
	after pulling	g augers. water encounte		-			-								÷
	after 48hrs	occurred at 65													+
- 00P	drilling.		leet bys alt	CI		- 15 -	-								-100
ATE.GD															+
L TEMPL							-								÷
						- 10 -									- -105
HARE -							-								+
						-									ļ
JRE.GP							-								Ŧ
						- 5 -									-110
															Ī
															÷
€ ME 115 −						- 0 -									+ -115
PISCA															ł
							-								‡
KCI-KOA PLOG PISCATAWAY DRIVE SLOPE FAILURE.GPJ MD SHA REVISED TEMPLATE.GPT 5/19/14 I I															ł

		KC		PROJE PROJE	F	ailur	es		Slope		-	вт LO 8-08	G	
		TECHNOLO	OGIES	Surface	e Eleva	tion	120.	09 (f	t)			SHE	ET <u>1</u>	OF <u>3</u>
Driller:	es/CenKen	Method:	Casing Ler	ngth:	Date	Begu	ın:	5/13	3/2014	Gro	undwat	er Lev	vels (f	eet)
	presentative:	Mud Rotary Hammer Type:	Casing Dia	meter:		-						ır:		
TA			5		Date	Com	pleted:		B/2014			rs:		
(#)	SO	IL CLASSIFIC			G	f)			AMPLES	JT	PLASTIC	M.C. ▲	LIQU 	JID
		AND REMAR	KS			(f		ш		പ് വ്			(%)	
ОЕРТН		YMBOL SHEET FOR			ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ		3rd 4th		● SPT (b	pf)	
				-					REC RQD		20	40 6	0 80	100
	Dry, light b	rown, loose, Silty	SAND (S	M)			S-1		2-4-5-5 N = 9					
							-	$\left(\right)$	REC=16	5"				+
							S-2	X	5-4-5-6 N = 9		•			
- 5 -	Dry, dark g	ray, loose, mediu ne fine Gravel (S	Im to coar	se		- 115-	S-3	\square	REC=16 5-6-6-7	7				<u> </u>
		stiff to soft, Sandy	-	ne				$\left \right\rangle$	N = 12 REC=10)"				
	fine Gravel	(ML)		iii C			S-4	X	1-2-2-3 N = 4		$ \bullet $			
							S-5	\square	REC=18 2-3-3-3					
-10 -	Maint light	hereite to red here	wa a di			- 110-		\square	N = 6 REC=18					10
	stiff, Sandy	brown to red bro CLAY, trace Gra	avel (CL)	1111			S-6	X	2-2-4-4 N = 6		•			+
								\square	REC=18 2-3-3-4					+
							S-7	\square	N = 6 REC=18					
- 15 -						- 105-	S-8		3-3-4-5 N = 7	5				15
							-	$\left(\right)$	REC=18	3"				+
							S-9	M	1-2-3-5 N = 5		•			
		brown, stiff, Clay nd lenses (ML)	vey SILT, s	some			S-10		REC=20 3-4-5-5	5				ļĮ
* ~20	•	brown, stiff, Fat C	LAY (CH)	1		- 100-	-	$\left \right\rangle$	N = 9 REC=20)"				20
– – ב		,,					S-11		3-4-7-1 N = 11		•			
	Moist, red	brown, stiff, Sand	ly SILT (M	L)			S-12	\square	REC=20 8-5-7-9)				
<u> </u>	Wet light k	prown, medium de	onco Clav		////		0.2	\square	N = 12 REC=24	1"				
25 – 25 –	SAND, len	ses of fine Grave	l (SC)	/ey		- 95 -	S-13	X	2-6-8-7 N = 14					25
		brown, medium s	tiff to stiff,				S-14	\square	REC=18 3-4-3-7					
≦ ∑	CLAY (CL)						0-14	\square	N = 7 REC=18					
							ST-1							+
						- 90 -	0.1-	\backslash	REC=22 2-4-6-7					30
							S-15	\square	N = 10 REC=20)				
							S-16		2-4-5-6 N = 9	5				
							-	$\left\{ \right\}$	REC=20)"				
₹35						- 85 -	S-17	X	3-3-4-5 N = 7					35
<u>ה – פ</u>	Moist, dark	gray, medium st	iff, CLAY ((CL)			S-18	\square	REC=20 1-3-4-6	5				‡
						-			N = 7 REC=20)"				
							S-19	X	2-3-4-7 N = 7					

		KC		PROJE PROJE	F	ailur	res		Slope			т lo - 08	G	
		TECHNOL	OGIES	Surface	Eleva	ation	120.0	09 (f	t)			SHE	et 2	OF <u>3</u>
Driller:	es/CenKen	Method:	Casing Le	ngth:	Date	e Begi	ın:	5/13	3/2014	Gro	undwate	er Lev	vels (fe	eet)
KCI Re	epresentative:	Mud Rotary Hammer Type:	Casing Dia	ameter:							0 hour 24 hours	:		
TA	02	Automatic							3/2014 AMPLES		PLASTIC			חו
(ft)	30	AND REMAR			-ітногоду	(#			N-COUN					
EPTH					QL(ELEV (ft)	IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"		FINES		
DEI		YMBOL SHEET FOR DLS AND ABBREVIA			Ē		□	F	REC	ლ 4		SPT (b	pf)	
	Moist, dark	gray, medium st	tiff, Sandy	SILT,			-		RQD REC=2(3-3-5-8)"	20	40 60	0 80	100
	some Clay	(ML)	_				- S-20	\square	N = 8 $REC = 24$					ţ
	Moist, dark SILT (ML)	gray, hard, mica	iceous, Sa	andy			S-21		2-6-9-1- N = 15	4				÷
							- S-22	\square	REC=20 100/.5')"				+
-45						- 75 -			REC=.5					45
-							S-23	Д	4-7-10 N = 17					ł
_							-		REC=18	5				Ì
-50 —						- 70 -]							
+	Moist, dark	gray, dense to v	ery dense	Silty			S-24		5-35-5()				ł
_	SAND, with (SM)	h Shells and cem	ented laye	ers] 3-24	\square	N = 85 REC=16					ţ
_							-							÷
-55 —						- 65 -	-							
_							S-25		9-14-20 N = 34					Ţ
-						-	-	\square	REC=18					ł
- 60 -							-							+ 60
- 00 -						- 60 -			11.17.0					
-							S-26	Д	11-17-2 N = 38 REC=6					ł
]		KEU=0					ţ
65 —						- 55 -	-							
-							S-27		8-13-17	7				ł
_								\square	N = 30 REC=18	3"				ļ
_							-							ł
-70 -						- 50 -								
_	Moist, dark Shells (ML	(gray, hard, Sand)	dy SILT, w	/ith			S-28		6-7-10 N = 17					Į
-	(,					-		REC=18	8"				ł
-75						- 45 -								
							-	\square	5-7-7					+''
-							S-29	Д	N = 14 REC=18					ł
									NLC-10	,			\downarrow	ļ

Driller: Method: James/CenKen Mud KCI Representative: Hammer TA Auto SOIL CLA	Rotary	GIES Casing Ler 81 ft	Surface				27W				8-08	
James/CenKen Mud KCI Representative: Hammel TA Auto SOIL CLA	Rotary	-		Eleva	tion	120.0)9 (ft	:)			SHE	ET <u>3</u> OF <u>3</u>
KCI Representative: Hammer TA Auto SOIL CLA	-		ngth:	Date	Begu	n:	5/13	/2014	Gro	undwat	er Lev	els (feet)
SOIL CLA		Casing Dia	meter:								ır: rs:	
		5		Date	Comp			/2014				
Ê				βGY	£		5. 	AMPLES N-COUN	NT	PLASTIC	M.C. ▲	LIQUID
	REMARK	5			ELEV (ft)	Ш	Ш		3rd 6" : 4th 6"			(%)
H AND I AND I				LITHOLOGY	Ш	IDNET	TYPE		3r 4t		● SPT (bp	of)
								REC RQD		20	40 60	80 100
Moist, light to dark SAND, with Shells (SM)	gray, very and cemei	dense, S nted laye	Silty ers		 	S-30	\boxtimes	13-48-50, N = 144 REC=17	8			>>•
Boring termina	ated at 82.5	5 ft. bgs										
⁸⁵ Notes: 1) Groundwater no	ot recorded	in horeh	ole		- 35 -							
due to mud rotary	drilling.											
2) Inclinometer No borehole to a dept	h of 82.5 fe	et.										
90 -					- 30 -							
-												
_												
-												
95 —					- 25 -							99
-												
_												
00 —					- 20 -							-100
-												
_												
-												
05 -					- 15 -							
-												
-												
10 -					- 10 -							
_												
_												
15 —					-5-							-115
00												
-												
_												

		K		PROJE PROJE	Fa	ailure	es		Slope	-	TEST B E	oring 3-09	6 LOG	
		TECHNOL	.OGIES	Surface	Eleva	tion	120.0	69 (ft	:)			SHE	ет <u>1</u> с	0F_ 3 _
Driller:	//Hillis Carne	Method:	Casing Ler 83.5 ft	ngth:	Date	Begu	n:	5/12	/2014	Gro	undwat	er Lev	els (fee	et)
		Hammer Type: Automatic	Casing Dia	meter:					/2014			ır: <u>17</u> rs: <u>15.5</u>		
33	SOI	L CLASSIFI							AMPLES		PLASTIC	M.C.)
DEPTH (ft)	SEE KEY S	AND REMAR	RKS DR EXPLANAT		ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	N-COUN مالي	3rd 6" 1 4th 6"		 FINES SPT (b) 40 60 	(%) pf)	100
	6" ASPHAL			/		- 120-	S-1	M	8-9-10 N = 19					+
	Moist, brow	n, loose to med Gravel and As		, Silty		 	S-2		N = 19 REC=3 9-6-3-4 N = 9 REC=3	3 1				+
- 5 - 	Moist, dark CLAY, trace	brown, mediun e Gravel and O	n stiff to stif rganics (CL	f, Silty ML)		- 115-	S-3	A	6-3-2-4 N = 5 REC=1	4 8	$\left \begin{array}{c} \bullet \\ \bullet $			
	Moist redd	ish brown, med	ium stiff to	stiff			S-4	Å	3-5-4-5 N = 9 REC=0)				+
 10 	Lean CLAY	, little Sand, tra				 - 110-	S-5 S-6	$\left \right\rangle$	2-3-3-5 N = 6 REC=2- 1-4-6-8 N = 10	4				+
	Moist, light CLAY (CL)	gray, reddish b	rown, stiff, l	Lean		 	S-7		REC=2 4-6-8-9 N = 14 REC=2)	•			+++++++++++++++++++++++++++++++++++++++
- <u>∳</u> 5 -⊻ -	Moist, light Sandy SILT	gray and reddis (ML)	sh brown, s	oft,		- 105- - 105-	S-8 S-9	$\left \right\rangle$	4-5-7-8 N = 12 REC=2 2-2-2-4 N = 4	2 4 4				
 1.61/0 - 20 						 	ST-1		REC=2 REC=2	4				+
	Wet, light g CLAY with PP = 0.25ts		o soft, Lean			- 100- 	S-10 S-11	$\left \right\rangle$	1-1-2-2 N = 3 REC=1 1-1-2-2	2 5 2				
 - 25 -	PP = 0.25ts	sf				 - 95 -	S-12		N = 3 REC=2- 1-2-2-2 N = 4	4 2	•			- 25
	PP = 0.5tsf					 	S-13		REC=2 1-1-1-1 N = 2 REC=1			1		+
	PP = 0.25ts	sf					S-14	Ø	1-1-2-2 N = 3 REC=2-	2 4				
	Lean CLAY PP = 0.75ts PP = 1.75ts	sf sf	um stiff to s	tiff,		- 90 - 	S-15 S-16	$\left \right\rangle$	2-2-3-4 N = 5 REC=2 2-3-4-5 N = 7 REC=1	4				+ + +
	PP = 1.25ts PP = 1.5tsf					- 85 -	S-17		2-3-4-5 N = 7 REC=2- 3-4-5-5	5 4				
	Wet, light g	ray, very stiff, C	CLAY (CL)			 	S-18 S-19	$\left \right\rangle$	N = 9 REC=2 3-4-5-8 N = 9	4				+

		K		PROJE PROJE	F	ailur	es		Slope		TEST B	orin 3-09		3
		TECHNOL		Surface	Eleva	tion	120.0	69 (f	t)		_			OF <u>3</u>
Driller: Jerry	/Hillis Carne	Method: s HSA	Casing Lei 83.5 ft		Date	Begu	ın:	5/12	2/2014	Gro	undwat		-	eet)
KCI Re SS	presentative:	Hammer Type: Automatic	Casing Dia	ameter:	Date	Com	pleted:	5/12	2/2014			ur: <u>17</u> Irs: <u>15</u> .		
	SOI	L CLASSIFI							AMPLES		PLASTIC			JID
(#) H		AND REMA	RKS		L0G	< (ft)	E	ш	1UOD-N م_		 	▲ ·		
DEPTH		YMBOL SHEET FO			ГІТНОГОВУ	ELEV	IDNET	ТҮРЕ	1st 2nd	3rd 6" 4th 6"		● SPT (t		
		OLS AND ABBREVI	ATIONS BELO	OW.			-		REC RQD		20	40 6	0 80	100
	PP = 1.5tsf Moist. olive	gray, stiff to ve	erv stiff. Sar	/		- 80 -	S-20		REC=2 4-5-7-8 N = 12	8				+
_	SILT, with S	Shells and Mica	i (ML)	,			S-21	\square	REC=2 3-7-9-1	.4				+
-							5-21	\square	N = 16 REC=2	5				
-45						- 75 -								45
_							-							
-														+
-50							S-22	Х	4-7-9-1 N = 16	5				50
-						- 70 -	-		REC=1	8				
-						[.								
-	Moist, olive	gray, dense, S	ilty SAND,	with			S-23		5-9-12	2				
-55 —	Shells and	Mica (SM)				- 65 -		\square	N = 21 REC=1		[]			
							-							
_							-					\setminus		+
-60 -						-	S-24		10-17-2 N = 42 REC=1	25 2		•		+ 60
-						- 60 -	-		REC=1	8				
-														
-							S-25		8-15-1					
65 —						- 55 -		\square	N = 33 REC=1	3 8				65
_							-							
-						-	-							
-70 -						-	S-26		10-15-1 N = 33	3				70
-						- 50 -	-		REC=1	8				
-														
						-	S-27		8-10-1					
-75						- 45 -		\square	N = 27 REC=1	7 8				75
							-							
-							-		E 60/0					\downarrow
-						[S-28	X	5-50/5 N = 10					

			Τ		Fa	ailure	es		Slope	•		BORI B-0	NG LC 9)G
	TECH	INOLOG		PROJE										B_OF_3_
Driller:	Method:	Ca	ising Len	Surface						Gro	undwa		evels	
KCI Re	//Hillis Carnes HSA epresentative: Hammer	Гуре: Са	83.5 ft sing Diar	meter:		Begu			2/2014				<u>17</u>	
SS	Auton SOIL CLAS		3.25 I∩N			Comp	neted.		2/2014 AMPLES		PLASTI			
DEPTH (ft)		EMARKS	PLANAT	ion W.	ГІТНОГОСУ	ELEV (ft)	IDNET	TYPE	7000-N Sud 6 Dat 6 Sad 6 Sad 6 Sad 6 Sad 7 Sad 7	3rd 6" 4th 6"	╡ ┣ ╌ ─ 	- — - ▲ □ FIN ● SP ⁻	ES (%) Г (bpf)	
 	Moist, olive gray, de Shells and Mica (SI		SAND, v	with		- 40 -	S-29	×	RQD REC=1 50/4"		20	40	60 8	
85 	Boring termina	ated at 85 ft.	. bgs			- 35 -			REC=4	1				
- 90 - 90 	Notes: 1) Water encounter drilling, 17 ft bgs aft afterr 24 hrs at com 2) Cave-in occurred drilling, and at 46 ft	er drilling, 1 pletion of dr I at 54.5 ft b	5.5 ft b rilling. gs afte	ogs r		- 30 - 								90
95 						- 25 -								95
0 TEMPLATE.GDT 5/19/ 1 1 1 1						- 20 -								100 - -
						- 15 - - 15 - 								-105
						- 10 - - 10 - 								-110 -
KCI-KOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GDT 5/19/14 CHOA PLOG PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GPJ PISCATAWAY DRIVE SLOPE FAILURE GPJ MD SHA REVISED TEMPLATE GPJ PISCATAWAY DRIVE SLOPE FAILURE GPJ PISCATAWAY DRIVE SLOPH						- 5 -								1 15

		KC		PROJE	Fa	ailur	es		Slope			st lo 3-10	G	
		TECHNOLO	GIES s	urface	Eleva	tion	125.0	07 (f	t)			SHE	et <u>1</u> of <u>3</u>	3
Driller:	CenKen	Method: Mud Rotary	Casing Leng			Begu			4/2014	Gro	undwat	er Lev	els (feet)	
KCI Re	epresentative:	Hammer Type:	Casing Diam	eter:					¥/2014			ur: ırs:		
TA	02	Automatic				Com			AMPLES		PLASTIC			-
(#)	50	AND REMAR			LITHOLOGY	(ft)			N-COUN					
EPTH					40L(ELEV (ft)	DNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"		FINES	. ,	
DE		SYMBOL SHEET FOR OLS AND ABBREVIA			Ë	Π	□	Ĺ	REC			● SPT (b		
	- 6" ASPHAI								RQD		20	40 60	80 100	
		oled As: Dry, brow GRAVEL, trace (S-1	A	2-3-3 N = 6					
			•	,			S-2		REC=6 2-2-3-4 N = 5		$ \bullet $			
	Dry, light b CLAY (CL)	prown, medium sti)	ff, Sandy				S-3	\square	REC=12 2-2-3-4					5
		n, medium stiff, Sa		(6.41.)		- 120-	3-3	\square	N = 5 REC=18					5
	•		-	. ,			S-4	X	3-3-4-4 N = 7		$ \bullet $			
	Dry, tan, bi	rown, loose, Silty	SAND (SM)			S-5	\square	REC=18 1-2-2-3					
- 10 -		, medium stiff, Sa	ndy SILT /			- 115		\square	N = 4 REC=18					0
	Dry, Down,	, medium sun, sa	nuy Sili (i	vil)			S-6	X	3 - 3 - 3 - 2 N = 6		$ \bullet $			
	Dry, gray, s	soft, Sandy SILT	(ML)				S-7	\square	REC=10 1-1-2-3					
							3-1	\square	N = 3 REC=20					
- 15 -	Moist, dark Silt (CL)	k gray, medium st	iff, CLAY, s	ome		- 110-	S-8	X	1-3-3-4 N = 6	-	$ \bullet + $			5
	Moist, brov	wn to gray, mediu		Y,			S-9	\square	REC=20 2-2-3-4	1				
		le Sand lenses (C tled gray, medium						\square	N = 5 REC=20	0"				
⁺ - 20 -	CLAY, fine	e Sand (CL)				- 10 5 -	S-10	\square	1-2-4-4 N = 6 REC=20		•			20
	Moist, gray SILT (ML)	/ to brown, mediu	m stiff, San	dy			S-11		1-3-3-5 N = 6	5	$ \bullet $			
IPLATE	Moist, brov	wn, loose, Silty SA	ND, some		· · · · ·			\square	REC=20 2-3-4-4	0"				
	Gravel (SM	Л)					S-12	\square	N = 7 REC=20					
BIA	Moist, red	brown, medium s	tiff, CLAY,			- 100-	S-13		1-3-4-6 N = 7	5	$ \bullet $			25
SHA F		al fine Sand (CL) brown, medium s	tiff to stiff.					\square	REC=20 2-4-6-6	0"				
	CLAY (CL)		·				S-14	\square	N = 10 REC=2)				
JRE.GI							S-15		2-3-4-6 N = 7	5	$ \bullet $			
- 00 - BAILU						- 95 -		\square	REC=20 3-3-5-8	0"			30	0
SLOP!							S-16	\square	N = 8 REC=24					
DRIVE							S-17		2-4-5-7 N = 9	7				
AWAY		brown, medium s	tiff, Silty CL	AY			0.40	\square	REC=20 2-4-6-6	0"				
- 35 –	(CL)					- 90 -	S-18	\land	N = 10 $REC=24$)				85
- 100 D							ST-1							
KCHKOA PLOG PISCATAWAY DRIVE SLOPE FAILURE.GPJ MD SHA REVISED TEMPLATE.GDT 401 1	Moist, gray	/, stiff to medium	stiff, CLAY,	with			S-19	\bigvee	REC=2 4-5-7-1	1				
- KCI	Sandy Silt	iayer (CL)					0-19	\square	N = 12					

		KC		PROJE PROJE	F	ailur	es		Slope			вт lo 8-10	G	
		TECHNOL	OGIES	Surface	Eleva	tion	125.	07 (f	t)			SHE	et <u>2</u>	OF _ 3 _
Driller: Ron/	CenKen	Method: Mud Rotary	Casing Le 80 ft	ngth:	Date	Begu	ın:	5/14	4/2014	Gro	undwat		•	eet)
	epresentative:	Hammer Type: Automatic	Casing Dia	ameter:	Date	Com	pleted:		1/2014			r: s:		
	SO		•						AMPLES		PLASTIC	M.C.	LIQUI	D
H (#)		AND REMAR	RKS		00	(#)			N-COUN	TI مان			-	
EPTH	SEE KEY S	YMBOL SHEET FO	R EXPLANA ⁻	TION	-ітногоду	ELEV	IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6 4th 6		∃FINES ●SPT (b		
ä	OF SYMBO	OLS AND ABBREVIA	ATIONS BEL	OW.					REC RQD		20	40 60		100
	Moist, gray Sandy Silt	, stiff to medium	stiff, CLA	Y, with			S-20	\mathbb{N}	REC=20 2-3-4-6)"				+
	oundy one						-	\square	N = 7 REC=20 2-4-6-7					ł
				<u></u>			- S-21	\square	N = 10 REC=24					ļ
-45 -	Moist, gray	r, medium stiff, S	Silty CLAY	(CL)		- 80 -	- S-22		2-3-5-7 N = 8		•			
							- S-23	\square	REC=24 2-3-5-7					ļ
	Sandy CLA Moist. gray	AY , very stiff to har	d. Sandv S					\square	N = 8 REC=24					÷
 50	(ML)	, . 	-, , -				- S-24	Х	3-6-10-1 N = 16 REC=24					
- 50 -						- 75 -		\square	KEC-24	ŀ				
							S-25	V	4-7-10-1					÷
									N = 17 REC=24					† +
-55 -	Moist, gray	, medium dense	to dense,	Silty		- 70 -	S-26	\square	4-6-10					
	SAND, with	n Shells and Mic	a (SM)	-			3-20	\square	N = 16 REC=18					ļ
							-							ł
– – – 60 –						- 65 -								+ +60
							S-27		5-7-14 N = 21					+
							-		REC=18	3"				Ì
						-								Ŧ
-65 -						- 60 -	S-28		15-19-2	5				
								\square	N = 44 REC=18	8"		T		ļ
							-							+
						- 55 -	-							70
	dense to m	e dark gray to gro nedium dense, S	ilty SAND,	y, with			S-29		12-19-1 N = 38			┥		+
	Shells and	trace Mica (SP)				-	-		REC=18	5''				Ì
							-							+
-75 -						- 50 -	S-30		7-11-15			+		
								\square	N = 26 REC=18					Ŧ
						-	-							ł
							1							1

		KC	T	PROJE PROJE	F	ailur	es		Slope			вт L B-1(
		TECHNOLO	OGIES	Surface	e Eleva	tion	125.0)7 (f	ft)			SF	IEET <u>3</u>	_ OF _ 3 _
Driller: Ron	/CenKen	Method: Mud Rotary	Casing Ler 80 ft	ngth:	Date	Begu	ın:	5/14	4/2014	Gro	undwa		-	feet)
	epresentative:	Hammer Type: Automatic	Casing Dia	meter:	Date	Com	oleted:	5/14	4/2014			our: ours:		
DEPTH (ft)	SEE KEY S OF SYMBO	IL CLASSIFIC AND REMAR SYMBOL SHEET FOR DLS AND ABBREVIA	KS REXPLANAT TIONS BELC	OW.	ГІТНОГОGY	ELEV (ft)	IDNET	TYPE	AMPLES N-COUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3rd 6" 4th 6"		─ ─ -▲- □ FINE ● SPT	- — — — - S (%)	
	Shells and Borin Notes: 1) Groundy due to muo 2) Inclinor	g terminated at 8 water not recorde d rotary drilling. heter No. IN-6 ins o a depth of 82 fe	2 ft. bgs d in boreh talled in				S-31		4-6-7 N = 13 REC=15	;				- 85 - 90 - 90 - 95
-115 						- 10 -								-115 - - - -

		K		PROJE PROJE	F	ailure	es		Slope	-	TEST E	BORIN B-1 1		G
		ТЕСНИОІ	OGIES	Surface	Eleva	tion	178.	50 (f	t)			SH	EET <u>1</u>	_ OF _ 3 _
Driller:	//Hillis Carne	Method:	Casing Ler 98.5 ft	-	Date	Begu	n:	5/13	3/2014	Gro	undwa	ter Le	vels (feet)
		Hammer Type: Automatic	Casing Dia						3/2014			ur: <u>D</u> urs:	-	
33	SOI	L CLASSIFI	3.25 CATION						AMPLES		PLASTIC			UID
H (ff)		AND REMA			Ó	(ft)			N-COUN		- ⊢ - ·	_		
DEPTH		YMBOL SHEET FO			ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	2nd 2nd 2nd	3rd 6" 4th 6"		□ FINE● SPT	(bpf)	
				/			S-1	\square	RQD 1-3-3-3	3	20	40	<u>60 80</u>	100
	Dry to mois Sandy CLA	t, gray and bro Y, trace Grave	wn, mediun I (CL)	n stiff,			5-1	\square	N = 6 REC=1					
		and brown, so		AY,		- 175-	S-2	X	1-1-2-3 N = 3					÷
	Dry, reddisl	n brown, stiff, L	ean CLAY,	trace			S-3	\square	REC=1 3-4-6-6	5				
	Gravel and	Sand (CL)						\square	N = 10 REC=1	8				
							S-4	М	2-5-5-8 N = 10 REC=1)	•			
	Moiot light	arou otiff Con		<u> </u>		- 170-	S-5	\square	3-5-6-5 N = 11	5				ļĮ
-10 -	-	gray, stiff, San vn to reddish b	•		<u>, , , , , , , , , , , , , , , , , , , </u>			\mathbb{H}	REC=1	2				10
	dense, Clay	ey SAND with	Gravel (SC	;)			S-6	\square	3-6-7-9 N = 13 REC=4	3				
	Damp, light Lean CLAY	gray with redd (CL)	lish brown, s	stiff,		-	S-7		3-6-9-1 N = 15	0				
		ay with yellowi	sh brown, s	oft to		- 165-		\mathbb{H}	REC=2 3-5-6-9	4				+
- 15 -	stiff, Sandy		·				S-8	\square	N = 11 REC=2					15
							S-9		2-5-5-6 N = 10	5				
	- Moist					- 160-		\mathbb{H}	REC=1 2-3-3-5	2				+
 							S-10	\square	N = 6 REC=2		•			20
							S-11	\mathbb{N}	2-3-5-5 N = 8	5				
								\square	REC=2 2-2-2-3	4				+
						- 155-	S-12	\square	N = 4 REC=2					
-25 -						-	S-13		1-2-2-3 N = 4	3			+	25
	- With iron	nodules						\square	REC=2 2-2-3-3	4				
							S-14	Å	N = 5 REC=2					
						- 150-	S-15		1-2-3-4 N = 5	4				
- 30 -	- With Sand	Ł					0.10	\square	REC=2 1-3-5-7	4			+ $+$ $+$	30
	NA-1 1 11 1 1						S-16	\square	N = 8 REC=2					
	Moist, light Silty SAND	brown, loose to (SM)	o medium d	ense,		- 145-	S-17		3-8-10-1 N = 18	13				
	-	-					S-18	\square	REC=2 7-9-12-1 N = 21	4 18				35
	- Brown, tra	ice Gravel					S-19	\square	REC=2 4-8-12-1	16				
						- 140-		$\left \right\rangle$	N = 20 REC=2	4				
							S-20	X	2-6-9-9 N = 15) 5				+

		KC	דר	PROJE	F	ailur	es		Slope	-	TEST BO	DRING	LOG	
		TECHNOLO) GIES	Surface									et 2 of	=_3
Driller:	M	ethod:	Casing Ler			Begu				Gro	undwate			
KCI R		ammer Type:	98.5 ft Casing Dia	meter:					8/2014			r: <u>Dry</u> s:		
SS		Automatic CLASSIFIC/	3.25 ∆TI∩N						8/2014 AMPLES		PLASTIC		- LIQUID	
(ft)		ND REMAR			0G√	(#)			N-COU			- -		
DEPTH	SEE KEY SYN	IBOL SHEET FOR			ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ	1st 6" 2nd 6"			□FINES(●SPT (bp		
	Moist, light br Silty SAND (S	rown, loose to r SM)	nedium de	ense,					RQD REC=2	4	20	40 60	80 1	00 - -
 - 45 -	Moist, dark gi stiff, mciaceo	ray and olive gr us, Sandy SIL1	ray, stiff to Γ (ML)	very		- 135-	S-21	X	5-7-9 N = 16 REC=1	5	•			+ + + 45 +
 - 50 						- 130- 	S-22	\times	4-6-9 N = 15 REC=1	5	•			- - - 50 -
 - 55 	- With Shell fi	ragments				- 12 5 	S-23	\times	7-8-12 N = 20 REC=1)	•			- - - 55 -
ATE.GDT 5/19/14						- 120- 	S-24	\times	4-5-7 N = 12 REC=1)	•			- - - - -
KCI-KOA PLOG PISCATAWAY DRIVE SLOPE FAILURE.GPJ. MD SHA REVISED TEMPLATE.GDT 5/19/14		ray, stiff, Sandy nts and Mica (N		th		- 11 5 	S-25	X	4-5-9 N = 14 REC=1	ł	•			
SLOPE FAILURE.GPJ M	Moist, dark gi (CL)	ray, stiff, Lean (CLAY and	l Mica		- 110-	S-26	\times	4-5-9 N = 14 REC=1	ł	•			- - - 70
PISCATAWAY DRIVE S	Moist, reddisł CLAY (CL)	h brown, stiff to	very stiff,	Lean		- 105- 	S-27	\mathbf{X}	4-5-8 N = 13 REC=1	3	•			- - -75
KCI-KOA PLOG	- With Silt Se	ams				- 100-	S-28		4-6-9 N = 15					+

		K(٦T	PROJE	F	ailur	es		Slope		TEST B	oring 3-11	i LOG	
		TECHNOI	LOGIES	Surface									ET <u>3</u> OF _	3
Driller:		Method:	Casing Ler 98.5 ft	ngth:		Begu		•	3/2014	Gro	undwat		els (feet)	
	//Hillis Carne epresentative:	Hammer Type:	Casing Dia						3/2014			ır: <u>Dry</u> rs:		
	SOI	L CLASSIFI							AMPLES		PLASTIC		LIQUID	
(ʉ) H		AND REMA	RKS		LOG	ELEV (ft)	E.	ш	N-COUN م ^ت م	o" o"		▲	-	
DEPTH		YMBOL SHEET FO			ГІТНОГОGY		IDNET	ТҮРЕ	1st 6" Data 2nd 6"	3rd 4th		●SPT (bp	of)	
	Moist, redd CLAY (CL)	ish brown, stiff	to very stiff,	Lean					RQD REC=1	8	20	40 60)
	02/11 (02)													
						- 95 -	S-29		6-9-9 N = 18					
- 85 								\square	REC=1				8	35
						- 90 -	S-30		3-7-9 N = 16					
- 90 - 						 -		\square	REC=1				9	90
	Moist, redd with Silt sea	ish gray, very s	stiff, Lean Cl	LAY,		- 85 -	S-31		4-7-9 N = 16					
95 	with Oilt Sea							\square	REC=1				9	95
DT 5/19/14 - 00L	Moist, dark stiff, Lean (Nodules (C	gray with redd CLAY, with cen L)	ish gray, vei nented Clay	ry /		- 80 -	S-32	X	4-7-8 N = 15 REC=1	8	•			00
PLATE.G	Boring	terminated at	100 ft. bgs											
KCI-KOA PLOG PISCATAWAY DRIVE SLOPE FAILURE.GPJ MD SHA REVISED TEMPLATE.GDT 5/19/14 -		ot encountered occurred at 92				- 75 -							-10	05
HS DW F														
URE.GP						- 70 -								
- 110 − 1410 − 1410 −													-+11	10
- IVE SLO														
WAY DR						- 65 -								
115 – ISCATA ISCATA													- 1	15
						- 60 -								

		KC	T	PROJE PROJE	F	ailur	es		Slope			бт lo 3-13	G	
		TECHNOL	OGIES	Surface	e Eleva	tion	114.:	34 (f	t)			SHE	et <u>1</u>	OF <u>3</u>
Driller:	CenKen	Method: Mud Rotary	Casing Len 73.5 ft	igth:	Date	Begu	ın:	5/8/	2014	Gro	oundwat	er Lev	els (fe	et)
KCI Re	epresentative:	Hammer Type:	Casing Dia	meter:			oleted:					ır: rs:		
SS	SO	Automatic	5 ATION						AMPLES		PLASTIC	M.C.	 LIQUI	D
H (ff)		AND REMAR			00	(£			N-COUN					
ЕРТН	SEE KEV S	YMBOL SHEET FOR			LITHOLOGY	ELEV (ft)	DNET	ТҮРЕ	1st 6" 2nd 6"	3rd 6" 4th 6"			. ,	
DE		DLS AND ABBREVIA			Ē	ш	□	ι Η	REC			● SPT (b		
	6" TOPSO			/			S-1	\square	RQD 1-3-5-5		20	40 60	<u>80 (</u>	100
	Moist, brow to stiff, Lea	vn and light brow in CLAY, trace G	n, medium ravel (CL)	stiff			3-1	\square	N = 8 REC=13	"				Ŧ
							S-2	X	2-3-3-4 N = 6		$ \bullet $			Ŧ
 - 5						- 110-	S-3	\square	REC=16 3-5-5-5					5
	Moist. light	brown, gray, ligh	nt grav. sof	t to				$\left \right\rangle$	N = 10 REC=17	,				+
	stiff, Sandy (ML)	SILT, with occa	sional Clay	/			S-4	\square	1-2-2-3 N = 4 REC=19		$ \bullet $			Ì
		vn, loose to medi	um dense	Silty		 - 105-	S-5		1-2-2-3 N = 4					÷
-10 -		ce fine Gravel (Sl		Only				\square	REC=22 1-2-5-4					
							S-6	\square	N = 7 REC=22					ļ
							S-7	X	2-5-7-8 N = 12		•			+
 						- 100-	S-8	\square	REC=20 3-2-5-4					+ + 15
							3-0	\square	N = 7 REC=16	5"				+ 15
							S-9	X	2-4-3-3 N = 7		•			+
		, medium stiff, S e iron nodules (C					S-10	\square	REC=19 2-2-3-4					+
 20))			- 95 -		\square	N = 5 REC=21					
							S-11	\square	1-2-3-4 N = 5 REC=21					Ì
-	Moist, dark (ML)	grayish brown, S	Sandy SIL	Г			ST-1		KEC-21					÷
 	Wet, dark g	gray, brown stiff,	Lean CLA	Y		- 90 -	0 10	\square	REC=23 3-5-7-8			-1		-
25 	(CL)	and reddish brow	n modium	otiff			S-12	\square	N = 12 REC=24					
	FAT CLAY		n, meuluff	ı əuii,			S-13		2-3-4-4 N = 7		$ \phi $			ł
	Wet, reddis CLAY (CL)	sh brown, mediui	m stiff, Lea	n			ST-2	r	REC=24	"				+
-30 -	. ,	medium stiff, Lea	an CLAY ((CL)		- 85 -		$\setminus /$	REC=21			┫┤		
							S-14	\square	2-3-5-7 N = 8 REC=24					ţ
	Wet, gray,	medium stiff, Lea	an CLAY ((CL)			S-15		1-2-4-6 N = 6					ļ
	-Wet Silt le	enses				- 80 -	0.40	\square	REC=24 2-3-5-7					+
-35 - 	Moint aller			<u>d</u> .,			S-16	\square	N = 8 REC=24					
		e gray, stiff to ver , with Shells and					S-17		2-4-7-12 N = 11	2				÷
							S-18	\square	REC=24 4-9-12-1	."				+
						- 75 -	0-10	\square	N = 21					

		KC		PROJE PROJE	F	ailur	es		Slope			т LOG 3-13	3
Driller:		TECHNOLO	Casing Len	Surface	1		114.:	34 (f	t)	Gro	undwate		els (feet)
	CenKen	Mud Rotary Hammer Type:	73.5 ft Casing Diar	notor	Date	Begu	ın:	5/8/	2014			r:	
SS		Automatic	5	neter.	Date	Com	pleted:					s:	
l (ft)		IL CLASSIFIC AND REMAR			οGY	(ff)			AMPLES			M.C. ▲	LIQUID
DEPTH	SEE KEY S	YMBOL SHEET FOR DLS AND ABBREVIA	R EXPLANAT		ГІТНОГОGY	ELEV	IDNET	ТҮРЕ	1st 6" D33 2nd 6"	3rd 6" 4th 6"		□FINES(●SPT (bp	of)
 	Moist, olive Silty CLAY	e gray, stiff to ver , with Shells and	y stiff, San Mica (CL-I	dy ML)			S-19	X	REC=24 5-8-12-1 N = 20 REC=23	5	20	40 60	<u>80 100</u> + +
- 45 - 45 						- 70 -	S-20	\square	5-8-10-1 N = 18 REC=23	;	•		4
- - -50 -						- 65 -	S-21	\times	6-9-13 N = 22 REC=19	2			50
-55	Moist, olive Silty SAND	e gray, medium d), with Shells and	ense to de Mica (SM)	nse,)		- 60 -	S-22	\times	11-14-1 N = 33 REC=18		•		55
- - - 60 - -						- 55 -	S-23	\times	9-13-18 N = 31 REC=17		•		
- - -65 -						- 50 -	S-24	\times	7-11-12 N = 23 REC=19				65
-70	Wet, olive with Shells	gray, stiff to hard (ML)	, Sandy Sl	LT,		- 45 -	S-25	\times	4-5-8 N = 13 REC=19				7(
-75	Cemented		10# 6	/		- 40 -	S-26	X	17-50/2 N = 100 REC=8.:	0			-7!
 	Notes:	i terminated at 74	-	feet		- 35 -	-						

		KC		PROJE PROJE	F	ailure	es		Slope			зт L B-13		
		TECHNOLO		Surface	Eleva	tion	114.3	34 (f	t)		_			_ OF _ 3 _
Driller: Ron/	CenKen	Method: Mud Rotary	Casing Ler 73.5 ft		Date	Begu	n:	5/8/	2014	Gro	undwa		-	feet)
KCI Re	epresentative:	Hammer Type: Automatic	Casing Dia	meter:	Date	Comp	leted:	5/8/	2014		0 ho 24 ho	our: urs:		
DEPTH (ft)	SEE KEY S	IL CLASSIFIC AND REMAR YMBOL SHEET FOR	KS R EXPLANAT		гітногоду	ELEV (ft)	IDNET	TYPE	AMPLES 1002-N ^{2nd 6,}		PLASTIC		- — — — - S (%)	
	2) Groundv due to muc 3) Inclinom	vater not recorde rotary drilling. eter No. IN-1 ins a depth of 74.2	d in boreh talled in			- 30 - - 30 - 25 -			REC RQD		20	40	60 80	100
- – - – - 95 – - – - – - –						- 20 - - 20 - 								- - - - 95 - - - -
						- 10 -								-100 - - - - 105 - -
· – - – - – - – - –						- 5 -								
-115 						5 -								-115 - - - -

		TZC	٦Т	PROJE		iscat ailur	-	Dr.	Slope				LOG
		KU		PROJE				27W			E	8-14	
		TECHNOL		Surface	Eleva	tion	109.3	39 (f	t)				T <u>1</u> OF <u>2</u>
Driller: Ron/	CenKen	Method: HSA	Casing Ler 58.5 ft	ngth:	Date	Begu	ın:	5/7/	2014	Gro			els (feet)
KCI Re	epresentative:	Hammer Type: Automatic	Casing Dia 3.25	meter:	Date	Com	pleted:	5/7/	2014			r: <u>36</u> s: <u>9.8</u>	
t)	SO	IL CLASSIFIC	CATION		X			S	AMPLES		PLASTIC	M.C.	
(#) H		AND REMAR	RKS			ELEV (ft)	E.	ш	N-COUN م ق	o" o"	-	⊐FINES (-
DEPTH		YMBOL SHEET FO			ГІТНОГОСУ		IDNET	ТҮРЕ	1st 6" 2nd 6"	3rd 4th		● SPT (bp	,
	FILL Samp	led As: Moist, b	prown, medi	um			S-1	\square	RQD 6-8-6-6	5	20	40 60	80 100
– –		AVEL and Sand	· ,	trace			5-1	\square	N = 14 REC=6	5			
	Sand (CL-I	ML)		uace			S-2	X	2-2-2-2 N = 4		$ \bullet $		
						- 105	S-3	\square	REC=1 2-2-2-3 N = 4	3		+	5
								\square	REC=1 2-4-5-5	8			
	-Trace Gra	vel 7.5 - 9.5 fee	et bgs				S-4	Д	N = 9 REC=1				
 						- 100	S-10		4-4-5-1 N = 9		┿		
- 10	Moist, gray	, brown, soft to Gravel (ML)	stiff, Sandy				S-11	\square	REC=1 3-2-2-2	2			10
								\square	N = 4 REC=1	9			
							S-12		1-2-2-2 N = 4 REC=2		•		
- 15	- Clayey					- 95 -	S-13		1-1-2-2 N = 3	2			15
							-	\square	REC=2				
							S-14		2-2-4-5 N = 6				
/19/14	Moist, gray	, medium dense	e, Silty Clay	ey		- 90 -	S-15	\square	REC=2 5-6-7-7	7			
² - 20 - ² - 20 - ²	SAND (SC)					-	\square	N = 13 REC=2				20
PLATE.													
							-	\square	225				
BSIA - 25 -	Moist, redd (CL)	lish brown, med	lium stiff, Cl	LAY		- 85 -	S-16	\square	2-3-5-5 N = 8 REC=2				25
D SHA							-		KLC -2				
M L L							ST-1		REC=2	1			
		gray, medium	stiff, Sandy	SILT		- 80 -	S-17	\mathbb{N}	2-4-4-6 N = 8	5			30
- 00	(ML)							\square	REC=2	4			30
VE SLC						-	-						
AY DRI	Maint to yes	t alive are: -*	ff to vor st	:#		- 	-						
KCHKOA PLOG PISCATAWAY DRIVE SLOPE FAILURE.GPJ MD SHA REVISED TEMPLATE.GDT 5/19/14		et, olive gray, sti T, with Shells ar				- 75 -	S-18	Д	4-8-10 N = 18 REC=1	;			
						-	-		KEU-I	0			
DAPLC							1						
KCI-KC						- 70 -	S-19	\boxtimes	4-6-9				

		KC	דר	PROJE	Fa	ailur	es		Slope		TEST BO	DRING	LOG
		TECHNOL	OGIES	Surface								SHEE	T 2 OF 2
Driller:	CenKen	Method: HSA	Casing Ler 58.5 ft	ngth:		Begu			2014	Gro	undwate	er Leve	els (feet)
	epresentative:	Hammer Type: Automatic	Casing Dia				pleted:					r: <u>36</u> s: <u>9.8</u>	-
	SO	IL CLASSIFIC							AMPLES		PLASTIC	M.C.	
DEPTH (ft)		AND REMAR	R EXPLANA		ГІТНОГОGY	ELEV (ft)	IDNET	ТҮРЕ	1UCO-N 5 g 5 g 7	3rd 6" 4th 6"		☐FINES (●SPT (bp 40 60	%) 0f)
		et, olive gray, sti T, with Shells ar				 	-	\times	RQD N = 15 REC=1				
 45 	Moist to we dense, Silt (SM)	et, brown, olive g y SAND with Sh	gray, mediu ells and Mi	im ca		- 65 -	S-20		4-7-10 N = 17 REC=1	7			45
 - 50 						- 60 -	S-21	X	8-13-10 N = 29 REC=1)			50
 - 55 					1 1 1 1	- 55 -	S-22	\times	7-11-12 N = 24 REC=1		•		55
						- 50 -	- S-23	\times	6-9-11 N = 20 REC=1)	•		60
	Borin	g terminated at	60 ft. bgs				-						
	feet bgs du	ncountered in an uring drilling and of drilling; 36 fe	54.8 feet a	at		- 45 -							- 65
E SLOPE FAILURE GPJ	pulling aug after drilling 2) Cave-in	ers; and 9.8 fee	et bgs 24 h 5 feet after	rs		- 40 -							-70
						- 35 -							-75
						- 30 -	-						
			ROJECT	Failur	res		•		TEST B	oring 3-15	i LOG		
---	--	------------------------------	-------------	------------------	---------------------	--------	--	---	---------	---	-------------------------	--	
	TECHNOL	OGIES Su	Irface Elev	vation	107.8	38 (fi	t)			SHE	ET <u>1</u> OF <u>2</u>		
Driller: Ron/CenKe	n Method: HSA	Casing Length 68.5 ft		te Begi	un:	5/7/	2014	Groundwater Levels (feet)					
KCI Representa		Casing Diame	ter: Da	te Com	pleted:			0 hour: <u>59</u> 24 hours: <u>10.1</u> _▼					
	SOIL CLASSIFIC	3.25 ATION					AMPLES		PLASTIC		LIQUID		
	AND REMAR	RKS R EXPLANATIO		ELEV (ft)	IDNET	ТҮРЕ	N-COUN	3rd 6" 1 4th 6"		 — → → → → → → → → → → → → → → →	(%) of)		
- Moist - Grave - FILL S - Moist - CLAY	Sampled As: dark brown, soft, Sar d (ML) Sampled As: dark brown, very sof trace Gravel (CL)	• · ·	-/	- 105	S-1 S-2 S-3	X	2-2-1-2 N = 3 REC=1 1-1-1-2 N = 2 REC=1 2-2-2-3	0 2 6 3	•				
Moist Sandy (CL)	Wood fragments dark brown to gray, r y Lean CLAY with Sar	nd, trace Grav	vel	- 100	S-4		N = 4 REC=1 2-4-3-4 N = 7 REC=2 1-3-2-3 N = 5 REC=1	0 4 3 3					
	to wet, brown, soft, S Gravel (ML)	-			S-6		1-1-2-2 N = 3 REC=1	2	•				
Lean	to wet, gray to reddis CLAY, with Silty SAN gray, medium stiff, L	D Layer (CL)		- 95 -	S-7 S-8	X	1-1-2-3 N = 3 REC=2 1-2-3-3 N = 5 REC=2	4 3	•				
CLAY	cal cracks at top contal crack between 2		1	- 85 -	S-9 ST-1 S-10		2-2-4-4 N = 6 REC=2 REC=1 2-3-3 N = 6 REC=1	4 6	•		20		
- Sand - - -				- 75	S-11		2-4-7 N = 11 REC=1	8	•		30		
Moist	dark gray to black, s SILT, with Shell and	un to very stif Mica (ML)	т,	- - - 70 ·	S-12	X	4-9-9 N = 18 REC=1	3					

/CenKen epresentative:	TECHNOL		TROOL	CT NC		es '10062	27W			B	-15		
/CenKen		OGIES	Surface	Eleva	tion	107.8	38 (ft	t)			SHEE	т_ 2 о	F_ 2 _
epresentative:	Method: HSA	Casing Ler 68.5 ft	-	Date	Begu	ın:	5/7/2	2014	Grou	Indwate		•	et)
	Hammer Type: Automatic	Casing Dia	meter:	Date	Com	pleted:	5/7/2	2014			:: <u>59</u> 5: <u>10.1</u>		
SO								AMPLES	F	PLASTIC	M.C.	LIQUID	
	YMBOL SHEET FOR	R EXPLANAT		DOTOHTI	ELEV (ft)	IDNET	ТҮРЕ	1st 6" 2nd 6"	<u>.</u> 0		∃FINES (9 €SPT (bpt	%) f)	00
Moist, dark Sandy SIL	gray to black, st T, with Shell and	tiff to very s Mica (ML)	stiff,)		- 65 -	S-13		4-5-7 N = 12					- - -
Moist, olive SAND, with	e gray, medium d n Shell and Mica	lense, Silty (SM)	/		- 60 -	S-14		N = 27					+ 45 + + + +
					- 55 -	S-15	\times	N = 24		•			- 50 - -
					- 50 -	S-16	\mathbf{X}	N = 18		•			- 55
				1 1 1 1 1 1	- 45 -	S-17	\times	5-6-8 N = 14 REC=1	8	•			- 60 - - -
Moist, dark Shell and N	gray, stiff, Sand Mica (ML)	ly SILT, wit	th		 	S-18	$\left \right $	REC=1		•			+ 65 - - -
	-		(CL) /			S-19							+
feet bgs du pulling aug drilling. 2) Cave-in	iring drilling; 59 ers; 10.1 feet bg occurred at 61 fe	feet bgs af is 24 hrs af eet bgs afte	fter fter er		- 35 -								- - - 75 - -
	OF SYMBO Moist, dark Sandy SIL Moist, olive SAND, with Moist, dark Shell and M Dry, dark g Boring Notes: 1) Water e feet bgs du pulling aug drilling. 2) Cave-in	SEE KEY SYMBOL SHEET FO OF SYMBOLS AND ABBREVIA Moist, dark gray to black, si Sandy SILT, with Shell and Moist, olive gray, medium of SAND, with Shell and Mica Moist, dark gray, stiff, Sand Shell and Mica (ML) Dry, dark gray, hard, cemer Boring terminated at 6 Notes: 1) Water encountered in au feet bgs during drilling; 59 pulling augers; 10.1 feet bg drilling. 2) Cave-in occurred at 61 feet bg	OF SYMBOLS AND ABBREVIATIONS BELC Moist, dark gray to black, stiff to very s Sandy SILT, with Shell and Mica (ML) Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) Dry, dark gray, hard, cemented CLAY Boring terminated at 68.6 ft. bgs Notes: 1) Water encountered in augers at 67 feet bgs during drilling; 59 feet bgs aft pulling augers; 10.1 feet bgs 24 hrs at drilling. 2) Cave-in occurred at 61 feet bgs aft	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW. Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) Dry, dark gray, hard, cemented CLAY (CL) / Boring terminated at 68.6 ft. bgs Notes: 1) Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after	SEE KEY SYMBOL SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS BELOW. PI Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) II Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) II Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) II Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) II Dry, dark gray, hard, cemented CLAY (CL) Boring terminated at 68.6 ft. bgs II Notes: 1) Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after drilling. II 2) Cave-in occurred at 61 feet bgs after II	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) 65 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 60 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 60 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 60 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 61 Dry, dark gray, hard, cemented CLAY (CL) 60 Notes: 70 1) Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after drilling. 35 2) Cave-in occurred at 61 feet bgs after drilling; 27.8 feet bgs 24 hrs after drilling. 35	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) I 5.13 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 65 5.14 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 60 5.14 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 60 55 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 50 51 Moist, dark gray, hard, cemented CLAY (CL) 40 5.18 Dry, dark gray, hard, cemented CLAY (CL) 40 5.19 Boring terminated at 68.6 ft. bgs 35 35 Notes: 1) Water encountered in augers at 67.5 35 35 1) Water encountered in augers at 67.5 35 35 2) Cave-in occurred at 61 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after drilling. 35	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) Image: Site of the stress	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) S-13 N=77 N=27 N=C=1 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 N=12-H N=27 N=C=1 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 N=12-H N=27 N=C=1 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 N=12-H N=27 N=C=1 60 S-14 S-14 N=12-H N=24 N=27 N=C=1 61 S-16 S-14 N=12-H N=24 N=24 55 S-16 S-16 S-18 N=14 REC=1 50 S-16 S-16 S-17 51 S-17 S-6-8 N=14 REC=1 S-17 52 S-17 S-6-8 N=14 REC=1 S-18 53 S-17 S-18 S-18 REC=1 54 S-18 S-18 S-18 REC=1 54 S-19 S-19 S0/1" REC=1 55 S-18 S-18 S-19 55 S-18 S-19 S0/1" REC=1 56 S-18 S-19 S0/1" REC=1 57 S-18 S-18 S-18 57 <	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) S-13 A-5-7 N=12 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-13 S-12-15 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-14 S-12-15 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) S-16 S-16 S-16 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) S-18 S-18 S-18 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) S-18 S-18 S-18 REC=18 Moist, dark gray, hard, cemented CLAY (CL) Boring terminated at 68.6 ft. bgs S-19 S0/1" REC=1 S0/1" REC=1 Notes: 1) Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after drilling. 27.8 feet bgs 24 hrs after drilling. S-19 S0/1" REC=1	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) 5-13 RCD 4-5-7 N=12 REC-18 20 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 65 5-14 8-12-15 N=27 REC-18 66 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 66 5-14 8-12-15 N=27 REC-18 60 60 5-15 9-11-13 N=24 REC-18 9-11-13 N=24 REC-18 60 61 5-16 S-16 S-16 S-8-10 REC-18 61 61 5-17 S-16 S-17 S-6-8 REC-18 61 61 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 61 S-18 S-18 S-18 REC-18 S-18 S-18 REC-18 S-14 Moist, dark gray, hard, cemented CLAY (CL) 40 S-18 S-18 S-19 S01" REC-1 S01" REC-1 <td< td=""><td>Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) 6-13 4-5-7 N=12 REC=18 9-11-13 N=27 REC=18 9-11-13 N=24 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 5-14 5-14 5-12 N=27 REC=18 9-11-13 N=24 REC=18 9-11-13 N=24 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 5-16 5-14 5-14 5-12 N=27 REC=18 9-11-13 N=24 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 5-16 5-16 5-8-10 N=18 REC=18 9-11-13 N=24 REC=18 9-11-13 N=24 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 5-16 5-18 5-18 N=14 REC=18 9-10 Moist, dark gray, hard, cemented CLAY (CL)/ Boring terminated at 68.6 ft. bgs -40 5-19 50/1" REC=1 -41 10 Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after drilling; 27.8 feet bgs 4 hrs after drilling; 27.8 feet bgs 4 hrs after drilling; 27.8 feet bgs 4 hrs after -35 -35</td><td>Noist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) S-13 Richard Mica (ML) Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-12 N=12 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-14 S-12.15 N=27 REC=18 Image: Comparison of the state of the stat</td></td<>	Moist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) 6-13 4-5-7 N=12 REC=18 9-11-13 N=27 REC=18 9-11-13 N=24 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 5-14 5-14 5-12 N=27 REC=18 9-11-13 N=24 REC=18 9-11-13 N=24 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) 5-16 5-14 5-14 5-12 N=27 REC=18 9-11-13 N=24 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 5-16 5-16 5-8-10 N=18 REC=18 9-11-13 N=24 REC=18 9-11-13 N=24 REC=18 Moist, dark gray, stiff, Sandy SILT, with Shell and Mica (ML) 5-16 5-18 5-18 N=14 REC=18 9-10 Moist, dark gray, hard, cemented CLAY (CL)/ Boring terminated at 68.6 ft. bgs -40 5-19 50/1" REC=1 -41 10 Water encountered in augers at 67.5 feet bgs during drilling; 59 feet bgs after pulling augers; 10.1 feet bgs 24 hrs after drilling; 27.8 feet bgs 4 hrs after drilling; 27.8 feet bgs 4 hrs after drilling; 27.8 feet bgs 4 hrs after -35 -35	Noist, dark gray to black, stiff to very stiff, Sandy SILT, with Shell and Mica (ML) S-13 Richard Mica (ML) Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-12 N=12 REC=18 Moist, olive gray, medium dense, Silty SAND, with Shell and Mica (SM) S-14 S-14 S-12.15 N=27 REC=18 Image: Comparison of the state of the stat

		KC	I	PROJE PROJE	F	ailur	es		Slope			вт lo 8-16	G	
		TECHNOL	-	Surface	Eleva	ation	83.4	8 (ft))	0			ET <u>1</u>	
Driller: Ron/	CenKen	Method: Mud Rotary	Casing Ler 53 ft	ngtn:	Date	e Begu	ın:	5/9/	2014	Gro	undwat		-	et)
(CI Re SS	epresentative:	Hammer Type: Automatic	Casing Dia	ameter:	Date	Com	pleted:	5/9/	2014			r: <u>5</u> s:		
t)	SO	IL CLASSIFIC	ATION		Σ			S	AMPLES		PLASTIC	M.C.		D
DEPTH (ft)		AND REMAR SYMBOL SHEET FOR DLS AND ABBREVIA	R EXPLANAT		ГІТНОГОСУ	ELEV (ft)	IDNET	ТҮРЕ	AUOO-N 5 d 0 5 Jat 0 0 7 Jat 0 7 Jat 0	3rd 6" 1 4th 6"		☐ FINES ● SPT (b 40 60	(%) pf)	100
	6" TOPSO	IL k brown to brown	soft Lear	/			S-1	\square	1-1-2-3 N = 3		•			+
-	CLAY, trac Moist, brow	e Gravel and Org vn to reddish bro e Sand at top (C	ganics (CL wn, soft, F	.) /		- 80 -	S-2		N = 3 REC=10 1-1-2-3 N = 3 REC=12	6 3	•			
⁷ 5 –			ŗ				S-3		2-3-3-5 N = 6	5				
-	Moist, gray fine Grave	/, medium stiff, Lo I (CL)	ean CLAY	, trace			S-4		REC=1 2-3-3-4 N = 6 REC=2	9 1	•			+
-	Moist, gray SILT, with	/ and brown, soft Mica (ML)	to stiff, Sa	andy		- 75 -	S-5		1-2-2-4 N = 4	ł				Ŧ
10	- more san	ldy					S-6	\square	REC=20 3-5-6-6	5				
-							S-7	$\left \right\rangle$	N = 11 REC=1 4-5-6-8	7 3				ļ
_						- 70 -		\square	N = 11 REC=1 4-5-6-7	9				+
15 — _							S-8 S-9	$\left \right\rangle$	N = 11 REC=1 4-4-5-7	9				
-	dense, Silt	/ to brown, loose y SAND, trace G				- 65 -	S-10	$\left \right\rangle$	N = 9 REC=1 4-5-5-5 N = 10	9 5				+
20	(SM)	-					S-11	\square	REC=1 2-4-4-4 N = 8	3 1				
-						- 60 -	S-12		REC=1 2-4-4-6 N = 8	5				+
25 -							S-13		REC=1 4-6-7-9 N = 13)		+		
-		e gray, medium d h Mica, trace She					S-14	\square	REC=1 5-6-8-1 N = 14	9 0				+
- - 30 -	()					- 55 -	S-15		REC=1 6-7-9-1 N = 16 REC=1	9				
- - - 35 -	Moist, brov (ML)	vn, stiff, Sandy S	ILT, with S	Shells		- 50 -	S-16		4-5-7-8 N = 12 REC=2	2				
						- 45 -	S-17		3-4-6-8 N = 10					+

		KC		PROJE PROJE	F	ailur	es		Slope			вт LC B-16		
Driller:		TECHNOLO	Casing Leng	Surface	e Eleva	ation	83.4	8 (ft))	Gro	undwa		ET <u>2</u> OF_	
Ron/	CenKen	Mud Rotary	53 ft		Date	e Begu	ın:	5/9/	2014	Groundwater Levels (feet) 0 hour:5 ∑				
SS		Hammer Type: Automatic	Casing Diam 5	neter:	Date	te Completed:		^{d:} 5/9/2014		24 hours:				
(ft)		IL CLASSIFIC			G {	(ft)		S	AMPLES	JT.		C M.C.		
DEPTH	SEE KEY S	AND REMAR			ГІТНОГОСУ	ELEV (1	IDNET	ТҮРЕ	Dag 2nd 6"	3rd 6" 4th 6"	20	□ FINES ● SPT (I		
	(ML)	vn, stiff, Sandy Sl and dark gray, v				- 40 -	- 		REC=2	3"				<u>,</u>
 -45 	SAND, with	Shells (SM)		Unity		-			N = 100 REC=9					45
 - 50 	Moist, dark with Shells	gray, very dense amd Mica (SM)	e Silty SAN	D,		- 35 -	S-19	$\left \right $	6-34-2 N = 55 REC=1	5			5	50
 - 55						- 30 -	S-20	\times	6-100/6 N = 100 REC=5	0				55
 - 60 	Notes: 1) Groundv feet bgs at 2) Inclinom borehole to	g terminated at 5 vater encountere completion of dri eter No. IN-2 ins a depth of 55. occured at 55 fee	d incasing illing. talled in	at 5		- 25 -	-							60
- 65 						- 20 -	-							65
-70 -						- 15 -	-						7	70
- 75 -						- 10 -	-						++7	75
						- 5 -	•							

	KC		ROJECT	Failu	res		-			st lo B-17			
	TECHNOL	OGIES SI	urface Ele	evation	109.	97 (f	t)				ET <u>1</u>		
Driller: Ron/CenKen	Method: Mud Rotary	Casing Length 69.2 ft	h: D	ate Beg	un:	5/9/	2014	Gro	undwa		•	et)	
KCI Representative:	Hammer Type:	Casing Diame	tor:					0 hour: 24 hours:					
SS	Automatic	5		ate Con	pleted:				1				
€ SO	OIL CLASSIFIC) (#)			AMPLES N-COUN	IT.		M.C.		D	
Н (AND REMAR	KS		ELEV (ft)		ш	e"	പ് വ്		FINES	(%)		
HLA SEE KEY S	SYMBOL SHEET FOR			ELEV	DNET	TYPE	1st (2nd	3rd 4th		●SPT (b	opf)		
OF SYMB	OLS AND ABBREVIA	TIONS BELOW	′. <u>-</u>	-	-		REC RQD		20	40 6	0 80	100	
FILL Sam	oled As: wn, loose SAND :			\otimes	- S-1	M	3-3-3-3					100	
- \(SP)			-	*		\square	N = 6 REC=1	9				ł	
- Moist, ligh	t brown to reddisl tiff, Sandy CLAY	n brown,			- S-2	X	2-3-4-4 N = 7		•			ł	
Moist brov	wn, loose, Silty S					\square	REC=1 3-3-4-5					†	
- 5				: 10	5 S-3	\square	N = 7 REC=1					5	
_					S-4	X	3-3-3-2 N = 6	2				÷	
Moist, grav	y, brown, very loc	se to loose,		· · · · · · · · · · · · · · · · · · ·	-	\mathbb{H}	REC=1 1-1-2-2	7				ł	
Silty SĂNĒ		,			S-5	М	N = 3					+	
10 -				· · - 10(7 - S-6	\square	REC=24 1-1-2-2	2					
_				• • •		\square	N = 3 REC=24	4	T			+	
-				 	- S-7	X	WOH-1-2 N = 3					ł	
_						\mathbb{H}	REC=1 2-3-3-4	6				+	
15 -				95	- S-8		N = 6 REC=1			4		15	
_ Moist, gray	y, soft, Sandy Cla	iyey SILT (MI	L)	-	S-9	M	2-2-2-5	5				ļ	
Moist. grav	y, medium stiff, S	andv CLAY.			-	\mathbb{H}	N = 4 REC=20	0				ł	
with iron n	odules (CL)	,,			- S-10		2-3-4-5 N = 7		•			+	
^{·20} Sandy Si	lt lens			- 90	- S-11	\square	REC=2- 2-2-3-5	5				20	
Maiat mat	tlad graanaih gra	v roddiob		A		\square	N = 5 REC=24	4				ļ	
	tled greensih gra se Clayey SAND				ST-1							+	
-						\square	REC=24 2-2-3-4					+	
25 -				- 85	- S-12	\square	N = 5 REC=24					25	
│ Moist, rede │ CLAY (CH	dish brown, medi	um stiff, FAT			S-13	\mathbb{N}	2-2-3-5 N = 5	5				+	
-	,				-	$\left(\right)$	REC=1	9				ł	
					- S-14		1-2-3-5 N = 5		 .			+	
30 -				- 80	S-15	\square	REC=2- 2-3-4-6	5				30	
Maint alter	o arou otiff to be		_ /		-	\square	N = 7 REC=24					ļ	
with Shells	e gray, stiff to har s and Mica, with S		-1,		S-16	X	2-5-8-10 N = 13	0				ł	
- Layers (M					1	\vdash	REC=24					+	
35 —				- 75]							35	
_					-							ļ	
-					-							ł	
-				-	-							ł	

		KC		PROJE	F CT NC	ailur D. 07	es 1006		Slope		TI	ЕST В-1	7		
Driller		TECHNOLO	Casing Leng	Surface	Eleva	ition	109.	97 (f	t)	Gro	undw			<u>2</u> (
Ron	/CenKen epresentative:	Mud Rotary	69.2 ft		Date	e Begu	n:	5/9/	2014			nour:		-	
SS	epresentative:	Hammer Type: Automatic	Casing Dian 5	neter:	Date	Com	pleted:	5/9/	2014			ours:			
(ft)	SO	IL CLASSIFIC			5	.		S	AMPLES			С М		LIQUIE - — I)
TH (AND REMAR	KS			(ft)	F	ш	1st 6" 2nd 6" O-N	°" 0			IES (%)	
DEPTH		YMBOL SHEET FOF DLS AND ABBREVIA			ГІТНОГОGY	ELEV	IDNET	ТҮРЕ	DISA DISA DISA DISA		20		T (bpf) 60		100
	Moist, olive with Shells Layers (ML	e gray, stiff to har and Mica, with S .)	d, Sandy S Silty Sand	ILT,								40			+++++++++++++++++++++++++++++++++++++++
- 45 - - 45 - 	Moist, olive and Mica (e gray, Silty SANI SM)	D with Shel	ls		- 65 -									+ + 45 + +
 50 	-					- 60 -									
 55 						- 55 -									
						- 50 -									-
мп	-					- 45 -									-
	Boring	terminated at 69	9.2 ft. bgs			- 40 -									
	 Lost drill between 25 Soil sam feet bgs. Groundv due to muc Inclinom 	ing mud fluid at 5 and 26 feet. pples not taken a vater not recorde 1 rotary drilling. eter No. IN-3 ins 5 a depth of 69.2	fter 32 and ed in boreho talled in	69.2		- 35 -									75

FIELD EXPLORATORY PROCEDURES

Standard Penetration Tests

The general field procedures employed by KCI are summarized in ASTM specification D 420 entitled "Investigating and Sampling Soils and Rocks for Engineering Purposes." This recommended practice lists recognized methods for determining soil and rock distribution and ground water conditions. These methods include geophysical and in-situ borings.

Borings are advanced to obtain subsurface samples using one of several techniques depending upon the site and subsurface conditions. These techniques are:

- 1. Continuous hollow-stem augers;
- 2. Wash borings using roller cone or drag bits (mud or water);
- 3. Continuous flight augers (ASTM D 1452);
- 4. Continuous sampling using a Tripod-mounted drill rig.

These drilling methods are not capable of penetrating through material designated as "refusal materials." Refusal may result from hard cemented soil, soft watered rock, coarse gravel or boulders, thin rock seams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

The Driller reports the subsurface conditions encountered during drilling on a field test boring record. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observation of ground water. It also contains the driller's interpretation of the soil conditions between samples. Therefore, these boring records contain both factual and interpretive information.

A geotechnical engineer reviews the soils and rock samples plus the field boring records. The engineer classifies the soils in general accordance with the procedures outlined in ASTM Specification D 2488 and prepares the final boring records, which are the basis for all evaluations and recommendations. The final test boring records represent our interpretation of the contents of the field records based on the results of the engineering examination and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Soil conditions at other locations may differ from conditions occurring at these boring locations. Also, the passage of time may result in a change in

the subsurface soil and ground water conditions at these boring locations. The lines designating the interface between soil or refusal materials on the records and on profiles represent approximate boundaries. The actual transition between materials may be gradual. The final Test Boring Records are included in Appendix B.

Cone Penetration Test

The standardized cone-penetrometer test (CPT) involves pushing a 1.41-inch diameter 55 to 60 cone through the underlying ground at a rate of 1 to 2 cm/sec. CPT soundings can be very effective in site characterization, especially sites with discrete stratigraphic horizons or discontinuous lenses. Cone penetrometer testing, or CPT (ASTM D-3441), is a valuable method of assessing subsurface stratigraphy associated with soft materials, discontinuous lenses, organic materials (peat), potentially liquefiable materials (silt, sands and granular gravel) and landslides.

Cone rigs can usually penetrate normally consolidated soils and colluvium, but have also been employed to characterize weathered Quaternary and Tertiary-age strata. Cemented or unweathered horizons, such as sandstone, conglomerate or massive volcanic rock can impede advancement of the probe The cone is able to delineate even the smallest (0.64 mm/1/4-inch thick) low strength horizons, easily missed in conventional (small-diameter) sampling programs.

Most of the commercially-available CPT rigs operate electronic friction cone and piezocone penetrometers, whose testing procedures are outlined in ASTM D-5778. These devices produce a computerized log of tip and sleeve resistance, the ratio between the two, induced pore pressure just behind the cone tip, pore pressure ratio (change in pore pressure divided by measured pressure) and lithologic interpretation of each 2 cm interval are continuously logged and printed out.

Tip Resistance

The tip resistance is measured by load cells located just behind the tapered cone. The tip resistance is theoretically related to undrained shear strength of a saturated cohesive material, while the sleeve friction is theoretically related to the friction of the horizon being penetrated. The tapered cone head forces failure of the soil about 15 inches ahead of the tip and the resistance is measured with an embedded load cell in $tons/ft^2$ (tsf).

Local Friction

The local friction is measured by tension load cells embedded in the sleeve for a distance of 4 inches behind the tip. They measure the average skin friction as the probe is advanced through the soil. If cohesive soils are partially saturated, they may exert appreciable skin friction, negating the interpretive program.

Friction ratio

The friction ratio is given in percent. It is the ratio of skin friction divided by the tip resistance (both in tsf). It is used to classify the soil, by its behavior, or reaction to the cone being forced through the soil. High ratios generally indicate clayey materials (high c, low \emptyset) while lower ratios are typical of sandy materials (or dry desiccated clays). Typical skin friction to tip friction ratios are 1 % to 10%. The ratio seldom, if ever, exceeds 15%. Sands are generally identified by exhibiting a ratio < 1%.

Pore Pressure

Piezocones also measure in-situ pore pressure (in psi), in either dynamic (while advancing the cone) or static (holding the cone stationary) modes. Piezocones employ a porous plastic insert just behind the tapered head that is made of hydrophilic polypropylene, with a nominal particle size of 120 microns (Figure 5). The piezocell must be saturated with glycerin prior to its employment. The filter permeability is about 0.01 cm/sec (1 x 10-2 cm/sec). When using the cone to penetrate dense layers, such as cemented siltstone, sandstone or conglomerate, the piezo filter element can become compressed, thereby inducing high positive pore pressures. But, the plastic filters do not exhibit this tendency, though they do become brittle with time and may need to be replaced periodically. In stiff over-consolidated clays the pore pressure gradient around the cone may be quite high. This pore pressure gradient often results in dissipations recorded behind the CPT tip that initially increase before decreasing to the equilibrium value.

Differential Pore Pressure

The Differential Pore Pressure Ratio is used to aid in soil classification according to the Unified Soil Classification System (USCS). When the cone penetrates dense materials like sand, the sand dilates and the pore pressure drops. In clayey materials high pore pressures may be induced by the driving of the cone head. If transient pore pressures are being recorded that seem non-hydrostatic, most experienced operators will ask that the penetration be halted and allowed at least 5minutes to equilibrate, so a quasi-static pore pressure reading can be recorded. Sometimes equilibration can take 10 to 30 minutes, depending on the soil. In practice experienced operators try to stop the advance and take pore pressure measurements in recognized aquifers and just above or adjacent to indicated aquacludes.

Piezometer

Water-level readings taken during the field operations do not provide information on the long-term fluctuations of the water table. When this information is required, observation wells/piezometers are necessary to prevent the borings from caving. Observation wells are constructed in accordance to ASTM D5092 by inserting PVC plastic pipe to the desired depths. A closed end slotted portion of PVC pipe is attached to the bottom of the plastic pipe to allow subsurface water to enter the observation well. Clean sand is backfilled around the bottom slotted portion of the well. The remainder of the hole is backfilled with an impervious material, using a bentonite or mortar cap to seal out surface water. The top of the PVC pipe has a removable cover to seal out rainwater.

SLOPE AND WATER-LEVEL MONITORING PROCEDURES

Inclinometer

The general slope monitoring procedures employed by KCI are summarized in ASTM specification D 6230 entitled "Standard Test Method for Monitoring Ground Movement Using Probe-Type Inclinometers". The apparatus, casing installation procedures, deflection survey procedures, and data reduction method are described in this standard.

The inclinometer casing is a pipe with two sets of grooves running inside the pipe throughout its length. The two sets of grooves are oriented perpendicular to each other, and facilitate inclinometer surveys in mutually perpendicular directions. The pipe may be made up of plastic, aluminum alloy or fiberglass. We used a three inche inside diameter Polyvinyl Chloride (PVC) pipe to perform the deflection survey. The pipe is capped at it bottom end and sealed to prevent the inflow of soil or water. The probe type inclinometer uses sensors inside the probe to indicate the orientation of the probe. The sensors are force balance accelerometers which give voltage outputs proportional to inclination of the probe. A portable readout unit with power supplies for sensors and display records the data. The inclinometer probe and readout unit are connected to each other with a cable having distance markings.

After drilling the borehole, the driller inserts the casing to desired depths. The casings are usually available in 10 feet long pieces and are connected on site. The rubber "O-ring" is sometimes used at connections to seal the joint. The casing is oriented in such a way that one set of grooves aligns with the direction of maximum anticipated movement. This orientation is commonly referred as A direction. The other set of grooves is referred as B direction. The driller may add water inside the casing to overcome buoyancy. The annular space between the casing and the borehole is backfilled using cement-sand grout.

For defection survey, a geotechnical engineer inserts a calibrated inclinometer probe to the bottom of the casing. The probe is aligned in A direction. The engineer makes a measurement traverse by holding the probe stationary at each depth interval and records depth and reading. The reading interval is usually equal to the wheel spacing on the probe. After each reading, the probe is raised by the reading interval and next set of readings taken. The procedure is repeated to the top of the casing to complete the traverse. The probe is then rotated by 180° and the above procedure is repeated. For uniaxial probes, two more traverses are made in B direction in the same way as for the A direction. The deflection surveys may be performed at desired intervals of time depending upon project requirements.

The recorded data are reduced using the software compatible with the probe. Two plots consisting of movements in A and B directions with respect to the elevations are usually drawn to indicate the ground movements. We will provide our slope monitoring results in a separate memorandum within two weeks from our last deflection survey.

Piezometer

Water-level readings taken during the field operations do not provide information on the long-term fluctuations of the water table. When this information is required, observation wells/piezometers are necessary to prevent the borings from caving. Observation wells were constructed in accordance to ASTM D5092 by inserting PVC plastic pipe to the desired depths. A closed end slotted portion of PVC pipe is attached to the bottom of the plastic pipe to allow subsurface water to enter the observation well. Clean sand is backfilled around the bottom slotted portion of the well. The remainder of the hole is backfilled with an impervious material, using a bentonite or mortar cap to seal out surface water. The top of the PVC pipe has a removable cover to seal out rainwater.

LABORATORY TESTING RESULTS

Appendix C

Boring	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	Water Content (%)
B-01	6.0 - 8.0				98	71		28.6
B-01	15.0 - 17.0	43	25	18				27.1
B-01	29.0 - 31.0				100	21		9.7
B-02	2.0 - 4.0							8.4
B-02	12.0 - 14.0				83	29		14.0
B-02	14.0 - 16.0	35	23	12				26.2
B-02	34.0 - 35.5	NP	NP	NP	100	24	SM	20.1
B-03	2.0 - 4.0	29	18	11				18.2
B-03	8.0 - 10.0	39	21	18				27.3
B-03	18.0 - 20.0				100	26		12.4
B-03	30.0 - 32.0				100	31		12.8
B-03	48.5 - 50.0				92	27		30.7
B-04	4.0 - 6.0	42	23	19				27.3
B-04	16.0 - 18.0	59	30	29				36.3
B-04	34.0 - 36.0				100	21		17.1
B-07	8.0 - 10.0	56	28	28				30.5
B-07	18.0 - 20.0	41	24	17				41.4
B-07	30.0 - 32.0				100	33		48.0
B-07	40.0 - 42.0	29	25	4				24.0
B-09	10.0 - 12.0	33	17	16				18.9
B-09	20.0 - 22.0	32	23	9	100	82	CL	34.9
B-09	26.0 - 28.0	35	24	11	100	71	CL	45.0
B-09	34.0 - 36.0	31	21	10				24.4
B-09	53.5 - 55.0	26	23	3	100	45	SM	27.2
B-13	16.0 - 18.0				100	28		28.5
B-13	24.0 - 26.0	39	23	16				34.4
B-13	26.0 - 28.0	51	25	26				34.9

Summary of Laboratory Results

 CKGCENKEN
 Summary of Laboratory R

 Geotechnical Engineering Consultants
 Beltsville, MD 20705
 Piscataway Drive Slope Stabilization

Project Number: 14-008

Boring	Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	Water Content (%)
B-13	30.0 - 32.0	37	23	14				32.7
B-13	38.0 - 40.0	28	22	6	100	54	CL-ML	26.1
B-16	4.0 - 6.0	54	27	27				31.2
B-16	12.0 - 14.0				100	56		16.2
B-16	22.0 - 24.0				100	26		17.8
B-16	33.0 - 35.0				100	80		23.4
B-17	8.0 - 10.0	NP	NP	NP	100	34	SM	43.7
B-17	16.0 - 18.0	33	25	8				29.0
B-17	30.0 - 32.0	55	25	30				35.3
hear Plane	0.0 - 0.0	37	27	10	100	77	ML	36.4

Summary of Laboratory Results

Fort Washington, MD

Project Number: 14-008

Test Method: ASTM D4318

Date: 5/11/2014

Geotechnical Engineering Consultants

Beltsville, MD 20705

ATTERBERG LIMITS' RESULTS

Project: Piscataway Drive Slope Stabilization

Location: Fort Washington, MD

Project Number: 14-008

EN_ATTERBERG_LIMITS LAB.GPJ CKG 2012.

	3		G M Te	ie F eote ater elep vw.l	ech ials hor	nica 5 an 1e N	ala dC No.	nd Cor (4	Er hsti 10]	nvi ruo	iror ctio	nim In I	ent nsr	al E Dec	Eng	jin n a	ee	rs ∄ T	es	tin	g																C	GI	7,	41	N											JT ſM		
С	lent	<u>_K</u>	CI	Tec	hn	oloc	lies	<u>s</u>																																		pe	& I	Roi	ad	F	ailı	ire	s					
PF	ROJEC	T	LO									· · · · · ·														F	PR	OJ	EC	CT	N	UN	1BI	ΞR									AT	*****										
	100	_		U.		SIEV 6	/E (=NI	NG 2	3 IN 1.5		CHE 3/	ES 14	1/2	3/8	1	3	4	6		81	U.S 0_1	5. S 14 1	SIE 16	EVE 2(E N) _ (UM 30		RS 	50	60	1		140	20	20						HYI	DR(0M	1E'	TEF	ک	,				-	
	100	I				I					I				ł				-					I	I	Т					רן			ſ	"																		ŀ	
	95				1																																									1							1	
	90	┢			+				1	+		-						+	:																+				-	-		-			+						┢─			
	85								+-				-					-	:	-	-										-				-			_								+								
	80	┝			+						-	+							:		-							-											+-	_						+					-		ł	
	75				+					-		+-					╢	+	:		-						$\left \right $				-	_					-	_		-				-	+	+	$\left \right $	-	-					
	70	\vdash								-									-																			_		_							Ц	4	_					
	65	ļ																								_																				_					ļ			
GHT	60							:																					•••••																									
PERCENT FINER BY WEIGHT																																																						
2 87	55	F									1					Ħ	Ħ														1									T		-			\uparrow								1	
IN IN	50	-	-		+			÷	-	-												-													-				+					-	\parallel	-							1	
L L	45				+			:		-		-				+			-										:					••••••	_					-		-			++-			+						
RCE	40	-					_			-							\square		:										:									_	_	_					┿	_								
1	35							_	_	-											-														_					_				_		_								
	30																																																					
	25											1				Ħ				_															Ť							1				-								
	20	╞			-			-			+	+																			+									+		+												
	15	┝						++					-															+			-				-+			-		+					┼┼	+								
	10	\vdash						+		_	-	_						-			╞	_							_		-						-	_		_					$\left \right $	-							-	
	5										ļ							_													ļ				_			_													 			
	0									_																																												
							100)							1	0				,	GF	۶AI	IN	SI		1 E II	NI	MIL	_LI	MI	ΕT	ΈF	٢S		0.'	1								0.0)1							0.0	Ĵ01	
		ſ	С	OB	BL	E	3			co	ars		RA T	VE		ine			6	:02	ars	e		n	ne	S		N	D			fi	ne								1	SII	LT	0	R	C	CL.	Aγ	(
-	Spe	cìr	me	n l	de	ntit	fica	ati	or	۱ ۱			1						. 1			1		CI	la:	ss	ifi	ca	tic	วท							·							LL			PL	.		2	1	Сс	Ť	Cu
•	B-14, S		· · · · ·									Ē								Re	dd	lisl	h B									A١	((C	L)									÷	38			22			16	T		1	
																																																ļ					Ĺ	
																		-																					•	•			_			_					-		+	
																																											-		_								╇	
┝──┘	Spe	cir	ne	n I	de	ntil	fica	ati	or	 }			D	10	0				D	60)				D	30)				D.	10)		0	%0	Gr	av	/el	Т	0	65	L Sar	nd			(%S	Sil	t	+	%	L Cl:	av
•	B-14, S													2	-		$\left \right $														**	. •					0.	· ·		╡	. ').2			ŀ			- ••		9.8			,
																	<u> </u>																							Ť														
																	_																							_														
$\left - \right $																																								_						-								

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDLINE GDT 5/20/14

~

•

	3	TI G M To W	ne Rober eotechni aterials a elephone ww.balte	rt B. Ba cal and and Co No. (4 rco.cor	alter Com d Enviror nstructio 110) 363- m	ipany imental f n Inspec 1555	Enginee tion and	rs d Testin	g			ATTEI		G LIMIT: ST METHO		
			Technol							PROJE		Piscatawa	y Dr. Slope	& Road Failu	res	
PF	ROJEC	T LO 60		Fort	Washing	ton, MD	ſ			PROJE	CT NUMBE	R	D	ATE TESTED		1
									CL	СН						
	р L	50														
	L S T I	40														
	C I T Y	30														
	- N D E X	20														
	x	10														
		0	CL-ML						ML	MH					~	
		(J		20	J		40			30 IT	č	30	10	0	
	Spee	cime	n Iden	tificat	ion	LL	PL	PI	Fines	Classifica						
•			26.5' - 2			38	22	16	100	Reddish Bro	own (4/4) LE	AN CLAY(C	 L)			

/20/14																
FAILURE.GPJ MTA REDLINE.GDT 5/20/14																
M G																
URE.G																
EFAIL																
SLOP																
AWAY																
16570-0 PISCATAWAY SLOPE														·····		
40-0 L																
S 165														 		
BERG													· · · · · · · · · · · · · · · · · · ·			
ATTERBERG LIMITS																

CLIENT KCI Technologies PROJECT NAME Piscataway Dr. Slope & Road Failu PROJECT LOCATION Fort Washington, MD PROJECT NUMBER DATE TESTED U.S. SIEVE OPENING IN INCHES I U.S. SIEVE NUMBERS I HYDROMETER 100 I <td< th=""><th>I</th><th></th><th></th></td<>	I		
U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 6 4 3 2 1.5 1 3/4 1/2 3/8 3 4 6 810 14 16 20 30 40 50 60 100 140 200 100 95 95 95 95 95 95 95 95 95 95 95 95 95			
6 4 3 2 1.5 1 3/4 1/2 3/8 3 4 6 810 14 16 20 30 40 50 60 100 140 200 100 1 </th <th></th> <th></th> <th></th>			
95			,
85			
HO 60 55 55 45 40 40 50 40 50 50 50 50 50 50 50 50 50 5			
		-	
			-
100 10 1 0.1 0.01 GRAIN SIZE IN MILLIMETERS		0.0	001
]
COBBLES coarse fine coarse medium fine SILT OR CLA	ΑY 		ļ
Specimen Identification LL PL Image: Specimen Identification Image: Specimen Identification Image: Specimen Identification	PI	Cc	Cu
● B-15, ST-1@22.0'-24.0', Yellowish Red (4/6) LEAN CLAY(CL) 40 24	16		
			-
Specimen Identification D100 D60 D30 D10 %Gravel %Sand %	√Silt	%	Clay
● B-15, ST-1 @ 22.0' - 24.0', 9.5 3.1 7.3	8	39.7	

~

•

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE.GPJ MTA REDLINE.GDT 5/20/14

		ert B. Balter C lical and Env and Constru e No. (410) 3	Company ironmental Er ction Inspecti 363-1555	igineers on and Te	esting				ATTEI	RBER(TE	G LIMITS ST METHO	B' RES DD ASTI	ULT S M D4318
CLIEN	KCI Techno						PROJECT	NAME	Piscatawa	y Dr. Slope	& Road Failur	es	
PROJE		Fort Wash					PROJECT		R	D	ATE TESTED		
	60				() (СН						
P L	50												
A S T C	40							/					
I T Y	30												
N D E X	20				•	\bigwedge							
X	10 CL-ML					л .) (мн)						
	0		20		40		60		8	30	100)	
Sn	ecimen Ider	ntification		PL	PI Fi	·	ID LIMIT						
	, ST-1 @ 22.0' - :		40	24	16				N CLAY(CL	.)			
							,						
													<u></u>
												·····	
							<u></u>						
													·····
 													

DIRECT SHEAR TEST REPORT

Fri, 16-MAY-2014 14:03:53

Fri, 16-MAY-2014 13:59:52

* Saturation is set to 100% for phase calculations.

	9		Ge Ma	eote ateri	obert chnica als an one f alterc	al a nd C	nd l Con:	En∖ stru	/iror ictic	nme on la	ental hspe	Enç	gine n a	eer ind	s Te:	stin	ıg												Ģ	SF	RA	IN								STN		
1	LIENT																									IE _							pe 8	<u>& R</u>	oad	l Fa	ailu	res				
P	ROJE	СТІ	_00)							·		PR	OJI	EC	T N	UM	BEI	R _															
		_		0.9	5. SIE\ 6	/E C		NIN 2	G IN 1.5	1 INC	3/4	1/2:	3/8	3	4	6	i {	810	.S. S 141	6 2	0 :	UMI 30	3ER 40	≳ 50	60	100) 14(ا 20 0	0				H	IYDF	ROM	/IET	ER					
	100				I													†• -				+-+	•~																			
	98	5								-			+							-++	+	+			-	-			┢	+									<u> </u>			
	90	>													-	-						+	-				\mathcal{H}		┢	_								_				
	85	;							_				ļ												_																	
	80								-							-		_		_								<u> </u>		_												
	75	;							_								1.																									
	7(_																										
	65																																									
분	00																																									
PERCENT FINER BY WEIGHT	60									-								1																								
В	55	;																			╟		:		+										╫			-				
	50						- -				:												:																		_	
	45		_																				-	_							_		ļ				_					
SCEI	40	, []				_					-												-															ļ				
ШЩ	35																																									
																					Π		:																			
	30													Ť	÷	1												- Hi														
	25									+	-	•••						+					:		-					-						-		-			-	
	20				-					-					-		+												. -	-											-	
	15	$\left \right $	_				: : :		+		-				-												_															
	10						;		_	ļ	-			-	-	.														-			ļ									
	5																																									
	0																											*****														
					1	00					_	1	0							1							0.1	1	imalaa				1.	0.	01			·I		0	.00	1
		(.								1		GR/	AIN	SIZ		·· .			ET	ER	S																
			С	DBE	BLES	3			·		AV		ne							edi		NE) []		<i>r</i>			_				S	SIL	тο	DR	С	LA	Y				
									ars			11	ne		'	CUa	arse						I		fir	ie							r		 			1			_] 	
•	Sре в-13, s				entif	108	itio	n		L				Ve)		······	Cla h Br							C A	NID	'BAI	·											Co	;	Cu
-			<u>س</u> در			·								ve	y U	- CI I K	Gr	ayıs		- OW		JI Z }	JIL	. 1 W	VILLI	5A		NIL.	-/				-	48	<u>></u>	Ċ	30	+	18	<u> </u>		
																																						+				
	Ĺ																										T													ļ		
-	· · ·				entif	ica	tio	n			D1		_		D	60	}		C)3()			D1	10		9	60			2	%	<u>68</u>		1		%	Si		- I	Cl	ay
-	B-13, S	1-1 (y 22	.0" - 2	4.0',						4.7	5	-									+					-		0.0	}			22	.3					7	7.7		
									-				-			• ••						+																				
_				·																							 															
_																		-									1															

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDLINE GDT 5/20/14

ATTERBERG LIMITS 16570-0 PISCATAWAY SLOPE FAILURE.GPJ MTA REDLINE.GDT

,

Fri, 16-MAY-2014 14:06:20

Project: Piscataway Slope Failure	Location: Ft. Washington, MD	Project No.: 16570-0
Boring No.: B-13	Tested By: Jason	Checked By: Jeremy
Sample No.: ST-1	Test Date: 05/12/2014	Depth: 22'6''-22'7''
Test No.: 1	Sample Type: Undisturbed	Elevation:
Description: Color: Very Dark Gray	ish Brown (3/2) SILT with SAND(M	L)
Remarks: ASTM D2435. Location:	B-13 / ST-1 (22.0' - 24.0') 64 1	SF

CONSOLIDATION TEST DATA

SUMMARY REPORT

					Before Test	After Test
Overburden	Pressure: 1.21	tsf		Water Content, %	34.08	23.01
Preconsolid	ation Pressure:	5.5 tsf		Dry Unit Weight, pcf	80.31	104.7
Compressio	n Index: 0.48			Saturation, %	81.78	97.59
Diameter: 2	2 in	Height: 1 i	in	Void Ratio	1.16	0.65
LL: 48	PL: 30	PI: 18	GS: 2.77			

Project: Piscataway Slope Failure	Location: Ft. Washington, MD	Project No.: 16570-0
Boring No.: B-13	Tested By: Jason	Checked By: Jeremy
Sample No.: ST-1	Test Date: 05/12/2014	Depth: 22'6''-22'7''
Test No.: 1	Sample Type: Undisturbed	Elevation:
Description: Color: Very Dark Gray	ish Brown (3/2) SILT with SAND(M	L)
Remarks: ASTM D2435. Location:	B-13 / ST-1 (22.0' - 24.0') 64 T	ſSF

	3	Ge Ma Tel	e Robert otechnic terials ar ephone l w.baltero	al ai nd C No.	nd l Cons (41	Envi stru	ironi ctior	men 1 Ins	tal E	Engir tion	nee and	ers d T	esti	ng												(GI	R/	AIN								BUT BTM		
CL	IENT	KCI T	echnolo	gies	5													P	RO	JEC	ст	NA	МE	Pi	sca	atav	Nay	/ Dr	<u>. Sl</u>	ope	<u>& R</u>	oad	Fa	ilure	s				
PR	OJEC	TLOC	ATION															PI	RO	JEC	СТ	NUI	MBI	ER						D	ATE	TE	STI	ED _					
			U.S. SIE	VE C	PEI 3	NINC 2	G IN 1.5	INCH 1 3	ES V4	1/23/	8	3	4	6	81	U.S. 0 14	. SIE 116	VE 20	NUN 30	MBE 40	RS	0 60) 1	00 1	40 2	1					HYD	ROM	IETI	ER					
	100		ŢŢ	Ť	Ť	Ē	Ē	ГŤ			ĬП	Ť	İ	Ť	Ť	Ť		T	ĨĨ	Ţ		P	Ē		Ť	ľ			Τ				TT]	
	95											_						+	$\left \cdot \right $						+	Ľ.							+						
	90																									E.													
	85													1												:							11						
	80				: 		-		:	_			: :					+	\vdash	:					╢	: :		_		_									
	75								:				Ë.													:		_											
									:																	÷													
	70								:																†	÷			1				\dagger						
4	65	_																								:							+						
GH	60																																						
PERCENT FINER BY WEIGHT																																							
В	55								<u>.</u>														1			:		-	1								<u></u>		
NER	50				:				:				Ë.										-			: -	$\left \right $										<u></u>		
ΤE	45								:			_	Ë													:		_											
И И И И																																							
ERO	40								<u>.</u>														-						-									1	
٩	35				÷				:		$\left \right $								-							;			+	-			++					-	
	30								<u>;</u>																														
									-								:																						
	25																												1							-			
	20				-				:																			+	-	+		+++		+				-	
	15				Ë																					:												_	
	10								:			1											†		++-				-	-								-	
	5								; ;			+	:	_	_			+		:	-		-			: 												~	
	0								:				:							:]	
				100						10				GF	RAI	IN S	1 Size		M	LLI	ME	ETE	RS		D.1						0	.01					0.0	001	
		CC	BBLE	S			9	GRA	VE	L								S,		1D						_				SI	Т	OR	C	LA١	1				
						co	arse	э		fin	e		co	bars	e		me	diur	n				fine															J	
	Spe	cimer	n Identi	ifica	atic	n										C	Clas	ssit	fica	atic	on										L	L	P	Ľ	P	1	Cc		Cu
•			.0' - 30.0',											W	eal							AY(C	CL)								3			25	1				
																																				_			
· · · ·	Spe	cimer	ı Identi	ifica	atic	n			010	0			D6	0			D	30]	D1(0		%	G	ra١	/el		%5	San	d		%	Silt		%	Ċla	y
•	B-13, S	-2 @ 28	.0' - 30.0',						2																	0	.0			().5					99).5		

,

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDLINE GDT 5/20/14

FAILURE. 16570-0 PISCATAWAY SLOPE

. .

Sat. 17-MAY-2014 10:47:32

	3	Geo Ma Tel ww	Robert I otechnica teríals an ephone N w.baltero	al an d Co lo. (- o.co	d E onsi 410	nviro truct	onm tion l	enta Inspe	l Eng ectio	gine n a	eer nd	s Tes	ting																TE	ST	M	ΞT⊢	IOE		B UTI BTM E	
1			echnoloc			······																								Roa						
	KOJE	TLOC	ATION _	E OF	PEN	ING I	IN IN	CHES	3						U.S.	SIE	VF	NU	MBE	RS			ER		1					TE T						
	100		6	4	3	21	5	1 3/4	1/2	3/8	3		6	81	10 14	416 	20	30) 4() 5	0 60) <u>1</u>	<u>00 1</u> T	40 2 TTT	200	r - F	1									
	95											-			•			4				ļ														
	90																																			
																					۲															
	85																					Ì					-									
	80									-+-+-												-	-/-	Ţ			1									
	75															•••••									÷						╈					
	70				-																				:		-									
 <u>+</u>	65							-																			-									
민민	60							-										╟				+			:	_	-									
BY V	55																																			
ZER K	50					+																		-												
PERCENT FINER BY WEIGHT	45																																			
СЩ СШ	40										_											ļ			:							ļ				
비미	35				:							:										_			:											
	30																								••••											
	25																					1														
	20																								<u>.</u>											
	15					++-																			:										·	
	10							-			-									_				++-	•											
	5													—										+	:	-										
	0		1	: 00				:	1	Ш 10						1	 					<u> </u>).1	:		<u> </u>			0.01	11	<u> </u>			0.0	01
													G	RA	IN S	SIZE	e in	M	ILLI	ME	ΞTE	RS														
		CC	BBLES	5			GF	RAV									S,	A٨	١D										SII .	T OF	2 (Y			
						coa	rse		fi	ine		(coar	se		me	diur	n			1	fine) 								· · ·					
			Identif	ica	tior	า										Clas														LL		PL		⊃[Cc	Cu
•	B-13, S	-2 @ 2.0'	- 4.0',				-				5	Stroi	ng E	Brow	vn (5	5/8)	LEA	N (CLA	١Y v	vith	SA	ND(CL)	•					35		17	-	18		
					•																											· · · · ·				
			1.1			_									· · · · ·							~			~						_				04.0	
•		CIMEI -2 @ 2.0'	1 Identif - 4.0',	ical	lor	1			00 .5			D	60			D;	30			[D1(J		%	Gr 1.	av 3	el	. %	₀Sa 25.	and 7		%	Sil	t 73		lay
-		<u> </u>	· · · ·																							-								r ¥		
			• • • •																1																	
							_																													

. •

•

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDUINE GDT 5/20/14

	3		rt B. Balter Cor ical and Enviro and Constructio No. (410) 363 prco.com		gineers on and T	esting				ATTEF		S LIMITS' F	
1		KCI Technol										& Road Failures	
Р	ROJEC	T LOCATION	Fort Washing	gton, MD	T			PROJE	CT NUMBE	R	D	ATE TESTED	
							CL	СН					
	P L	50											
	L A S T I C	40											
	I T Y	30											
	I N D E X	20			•		/	[
	Х	10 CL-ML											
				20		40	(ML)		60	8	30	100	
			t:Fination		PL		Fines	Classifica					
		s-2 @ 2.0' - 4.0		35	17	18	73	Strong Brov		N CLAY wit	h SAND(CL)	
			,									-	
\mid													
20/14													
201 5		,											
												,	
WTA RE													
CP.													
AILUR													
L BGO				+									
		<u>, , , , , , , , , , , , , , , , , </u>		-									
SCATA	1							·					
SI4 0-0				-									
5 1657													
LIMIT													
ATTERBERG LIMITS 16570-0 PISCATAWAY SLOPE FAILURE.GPJ MTA REDLINE.GDT 5/20/14													
ATTE													

	3	G M Te	eoteo ateria eleph	bert chnica als an one N alterc	al ar id C Vo. (nd E ons (410	Envi struc	iron ctior	mer 1 In	ital spe	Eng	jine n a	eers nd	Tes	sting	9												1	G	R	A	IN									UT TM		
1	IENT																																	& R									
PR	OJEC	T LO																: S. S						NŲI	MB	ER										_							
	100	···	0.8	5. SIEV	4	9 EP 3	2	1.5		пер 3/4	1/2		3	-4	6	8	<u>10</u>	5. 8 14 1	6 2	0	30	40	:KS 5	0 60	<u>) 1</u>	00 1	140	200)	1 1			, T				1 E P	····				~	
	95			I				I			t	ł					•	-						I		1	1																
	90																																										
	90 85					:															N																						
	80					: : :		_														N																					
	75																						\																	_			
	70																						\uparrow																			_	
	65																																									-	
PERCENT FINER BY WEIGHT	60				-					: - :					_	-				\parallel				\															_			_	
3Y WE	55															_	_			\parallel				ł					_						\parallel				_			-	
VER E	50												_											/	\downarrow				_														
	45					:				: - :															A			-	_														
RCEI	40					:				: : :		++-								+						.			-													~	
ЦЩ.	35					:				:							_				-					-				-	_					-	+	_					
	30							_		<u> </u>				_													X	-															
	25					:				:										╈								Y	╉				+-									-	
	20					:							-		<u> </u>					++								-	+	_						$\left \right $							
	15																+								-											+-+						-	
	10				_											-	+								1			-	+													-	
	5				_	:		-									+				-																					-	
	0	L	I		100		LL	-l	I	J:		10	lii	<u> </u> ``					1	11	1	<u> </u>	1		Ł		0.1		I		L	I		0	.01	11			1		0	00	1
		[T			GR	<u></u>	<u></u>					GR/	AIN	I SI		IN SA			ME	ETE	RS																	7	
		С	OB	3LE:	s		со	ars				ine	!		coa	arse		n	ed						fine	9		_					SII	_T	OF	२ (CL.	AY					
	Spe	cime	en lo	lenti	fica	atic	n											CI	as	sifi	ica	atio	on											L	L.		PL		Р	Ι	Сс		Cu
•	B-13, S	6 @ 10).0' - 1:	2.0',											F	Pale	Br	owr	i (6/	3) \$	SIL	TY.	SA	ND	(SN	1)								N	P		NF	>	NI	>			
	·																																			$\left \right $							
								_																																_			
┝─┴	Spe	cime	en lo	lenti	fica	atic	n			D1	00				060)			D3	0		T	 	D1	0		9	60	Gra	ive	el	[%8) San	d			// %8	Silt		%		ay
	B-13, S									4.					.269				0.09										0.0		•••			6.0						24			-
																	_																										

	3	The Geo Mate Tele www	Robert E technica erials and phone N v.balterce	B. Balter I and En d Constru lo. (410) b.com	Comp vironm uction 363-1	any nental E Inspect 555	ngineei íon anc	rs I Testing)			ATTE	RBER(G LIMIT IST METH	"S' RE 100 AS	SULTS TM D4318
			echnolog		hinata						CT NAME			& Road Fai		
		60				טאין, ואנ	I			1100E						
									CL	СН						
	P	50														
	P L A S T	40-														-
	I C I T	30-														
	¥															
	N D E X	20														
	~	10	N2 A 41						\frown							
			CL-ML		20			40	(ML)	(MH)	50		80	1	00	
		0			20			40					00	I	00	
	Spe	cimen	Identif	fication		LL	PL	PI	Fines	Classifica	ation					
•	B-13,	S-6@10	.0 ' - 12.0',			NP	NP	NP	24	Pale Brown	(6/3) SILT	Y SAND(SM)				
													·····			
														· · · · .		
									_							

	3		The Geot Mate Telep	ech rial cho	inica s an ne N	l ar d C lo.	nd l Con: (41	Env stru 0)	viroi uctio	nm on I	ent nsr	al E	ingi tion	ne ar	ers nd	s Te	stir	ng														(G	R	A	N											DN 422
С	IENT	KC	l Te	chr	olog	ies																	PI	RÖ	JE	ст	N	AM	E.	Pi	sca	ata	wa	уĽ	Dr.	Slo	pe	<u>& R</u>	oa	d F	ai	lure	s				
Р	ROJEC	TL																										UM	BE	R								ATE									
			ι	J.S.	SIEV 6				IG IN 1.5				1/23	 /8		4	(3	8									60	10	014	40 :	200					+	-IYD	RO	ME	TE	R				_	
	100				I								Ι						1		1								I																		
	95																										1					ŀ							T		1						
	90											•								-													-														
	85	-		-			:					\int															┢						-				ŀ		╈				-			-	
	80		-				:	$\left\{ \cdot \right\}$					₹					-					.				┢					÷					+		╈								
	75	\vdash	_	-			-		_													-					+										-									-	
	70		_				i.								H	-	-							-		-						<u>:</u>			_		\vdash		╢		_		_			_	
╎∟	65						-									\¦:																-	-						_								
L HO	60	\square	_	_				_		_							X							_		_	_	_													_						
PERCENT FINER BY WEIGHT	55														-				\geq								_																				
ERB	50															_						\downarrow																									
FIN	45																									K																					
CEN																													<u> </u>																		
PER	40																														J																
	35									-1-							1										1				╢	Ħ							T								
	30																															ŀ					<u> </u>				╈					_	
	25								<u> </u>					╁				+							-		-					ŀ					-										
	20	\vdash	_	_			:	+	_					╈		-		+		+-		-				-	+	_				†: I															
	15					++-		+						╈		-		-									-														-						
	10	\vdash		+		╫		+-+						╉		-		-							+	-	+	_					-														
	5						•	+										_						$\left \right $			+						-		_					+							
	0						:] 1	\prod_{n}		:).1								0.01							0.00	11
						.00							11					G	iRA	١N	sı			IM	1LL	.IM	ET	ΈF	٩S	ι.								C		•						0.00	
		<u> </u>	~~			<u> </u>				GI	٦A	VE	L										S	۸N	١D)						T					<u></u>	 			<u></u>						
				<u> </u>		> 		С	oar	se			fii	пe			cc	ar	se		ก	neo	liui	m				fi	ne								SIL	- I 		<u> </u>	<u> </u>	_A	I 				
	Spe	cim	en	lde	entif	ica	atic	on													CI	as	si	fic	ati	on	۱											L	L		Ρ	L		Pl	С	с	Cu
	B-14, S	-5 @	8.0' - '	10.0'										R	ede	dis	hΥ	'ell	low	(6)	(8)	CL	AY	ΕY	GF	ZAV	/EL	. w	ith	SA	ND)(G	C)					3	4		1	5	•	19			
										-					-																									+							
							·····			+																																					
					•																																			Ţ					ļ		
	Spe					ica	atic	on			D	10					D6					D	30		-		D	10			%	G			1	C	%S		d			%	Sil		-J	%C	lay
•	B-14, S	-5@	8.0' • '	10.0'	•							25				3	3.18	36							+							3	6.1				3().4						3	3.6		
																																			_					-							
														T																																	

•

,

	The Robert B. Balter C Geotechnical and Envi Materials and Construe Telephone No. (410) 3 www.balterco.com	ompany ronmental Enginee ction Inspection and 63-1555	ers d Testing		ATTERBE	RG LIMITS' RE TEST METHOD AS	
	KCI Technologies					lope & Road Failures	
PROJE	CT LOCATION Fort Wash	ington, MD		PROJECT NUM	BER	DATE TESTED	
	50		CL	CH			
P L A S T	40						_
I C I T Y	30						
	20	•					
^	10 CL-ML		ML	MH			
	0	20	40	60 LIQUID LIMIT	80	100	_]
Spe	ecimen Identification	LL PL	PI Fines				
	S-5 @ 8.0' - 10.0',	34 15		Reddish Yellow (6/8)	CLAYEY GRAVEL wit	h SAND(GC)	
				·····		********	. <u></u>
							····
							······
				-			
_							·
					<u></u>		

• • •

	3		Geo Mate Fele	tech erial pho	pert I nica s an ne N lterc	al ar d C lo,	nd l Con: (41	Env stru 0)	viroi Jotic	nm on l	ent Insj	al E pec	Ingition	ine ı aı	ers nd	s Te	stir	١g															G	F	۶A	11											ON 9422
CL	IENT	KC	i Te	echr	olog	jies	5																Р	RO	JE	ст	NA	٩M	IE .	Pi	sc	ata	aw	ay	Dr	. SI	ope	e &	Ro	ad	Fa	ilure	es_				
PR	OJEC	ΤL																				-					'NU	JM	BE	R												ED					
			Ī	U.S.	SIEV 6	ΈC 4		NIN 2	G IN 1.5	1 IN ;	CHI 1 3,	ES (4	1/23	 8/8	3		(3	81	U.9 10 1	S. S 14 1	81E) 16	/E 20	NUI 30	MB	ER: 0	S 50 (60	10	01	40	1 20	0					HY	DR(ОМ:	ETI	ER					
	100								1				ļ	-	Π						T	1		N							1																
	95						:								-			-									1					÷		1	1-	1	-					-					
	90	$\left \right $																								\mathbb{A}		-						-	-	+-											
	85	H													-			+		-		-			-		ľ							_		-				\parallel							
	80									-	-													-		-	\square				_			+		-					+						
	75										_						_	+		-					+			$\left\{ \right\}$							-												
	70		_			_	:															-				-		$\left \right $				-			-		_					-					
	65														_			_										-														_					
GHT	60																									-										<u> </u>					<u> </u>						
PERCENT FINER BY WEIGHT	55																										<u> </u>																				
R B																																															
LNE	50																													•																	
ENT	45	Ħ		-					-+											1			Ħ				-			\int				1													
ERC	40																-			-			╈			: : :	-			\uparrow						+				╈	╋						
	35					-++	:	+							╈										-	:	-	_			\setminus			+	-						+						
	30						:			_	_				+		+					-			-	:		_			-			_	-						$\left \right $	+					
	25									_							_	_									_								+	-					$\left \right $	_					
	20						-												• • • •						_		_				_																
	15														_										_			_								_	_				_	_					
																																					_										
	10														T																																
	5		1												1										T																		*****				
	0	<u>ш</u>	L	1		100)	1_1	!			•	1	0						1		1	.ll.	<u> </u>		<u>.</u>	<u> </u>	E		(0.1		1l.				. 1		0.0	01			1	1	I	0.0	01
		·																G	RA	١N	SI	ZE					ET	EF	RS														-			,	
			co	BB	LES	s		C	oar		RA	\VE		ne			cc	bar	se		n	ne	S diu	1A m	NE) [fi	ine								S	IL-	ΓC	DR	С	LA	Y				
	Spe	cin	nen	Ide	enti	fic	ati	on													Cl	las	si	fic	at	ior	۱					-							LL	-	F	۶Ľ	Γ	ΡI		Сс	Cu
1 1	B-14, S	-10 (D 19.()' - 21	1.0',											L	igł	nt (Dliv	e E	3ro	wn	(5	3)	CL	AY	EY	SA	NC)(S(C)							_	35	;	2	20		15			
										_																												_					-		-		
																																						_					-		+		
										+													•••••															+					-		1		
	Spe	cin	nen	ld	enti	fic	ati	on			Ε	010	00			l	26	0				D	30				D	10)		9				el				and	1		%	Si				Clay
•	B-14, S	-10 ()) 19.()' - 2'	1.0',							4.7	5			().18	B6				0.0	82		_					_			0.	0				72.	5		<u> </u>			2	27.5	5	
										_															+											╀					-						
										-										╀					-					+						╀											
															-					+					T											╈					1			·			

	3	Th Ge Ma Te	e Robert otechnica iterials an lephone l	B. Balter al and En id Constru- No. (410) co.com	Compa vironme uction I 363-15	iny ental En nspectio 55	igineer on and	s Testin	9			ATTE		G LIMIT		
	ENT		W.baiterc							PRO.IF		Piscatawa	v Dr. Slope	& Road Fail	ures	
				Fort Was	shingtor									ATE TESTE		
		60									Ī					
									(CL)	СН						
		50								-				/		
	P															
	L A S T	40														
	T	-0														
	l C															
	l T	30														
	Y															
	I N	20								1						
	D E X															
	~	10														
		10	01.14						\frown							
			CL-ML						(ML)	MH						
		0)		20		1	40		.1	30	1	80	1	00	J
										LIQUID LIM	ΙТ					
	Spe	cime	n Identi	ification		LL	PL	P١	Fines	Classific	ation					
•	B-14, 3	S-10 @	19.0 ' - 21 .	0',		35	20	15	27	Light Olive	Brown (5/3) CLAYEY S	AND(SC)			
4																
223																
Щ. Э																
MIAF																
₽ B																
Pe FA									<u> </u>							
TAWA			<u>. . </u>													
ISCA																
10-02									ļ							
S 165																
LIMIT																
BERG														···		
ATTERBERG LIMITS 16570-0 PISCATAWAY SLOPE FAILURE.GPJ MTA REDLINE.GDT 5/20/14																
~ هسته					·····							·····				

	3	O M T	Seote lateri elepl	obert chnic ials ar none paltero	al a nd C No.	nd Con: (41	Env stru 0) 3	riron Ictio	mer n Ins	ital I spec					ting	9	• •	•											C	GF	RA	٨N									UTI TM E	
1	IENT																																ope						5			
PF	ROJEC	TLC										1								. F EVE					UM	IBE	R		1								TER					
	100	(··· - 1 ····	U. 	S. SIE	4	3	2	1.5		1ES 3/4	1/23	18	3				310).S. 14	16	- 20	3	0 4	10 10	50		10	014	40 2	00			-	-	FIIL.				` 				
								1			1				┝┼		••	l.			\downarrow					I																
	95									ŀ												Ĩ																				
	90									1			+		-		+			-				\uparrow					:			+				+						
	85						┿╋						╢							_	-	_							:								+					
	80					-	+	_	-	:			$\left \right $:			_						:		$\left \right $:			_				$\left \right $		_		-		
	75			ļ						:				:			_						:						:									_				
	70									-																1																
E	65																																									
PERCENT FINER BY WEIGHT	60															-								-		_																
BY	55			+ • • • • •											\square		\neg										$\left \right $					-										
NER	50							-		-		-				+	+						:	-			+	╢	:								+					
L E	45							_	-	<u> </u>				:									:				-		: 		_	-				$\left \right $		+				
SCE)	40								ļ					:			_						:					\downarrow	: 						_							
ЦЩ.	35																											<u>\</u>														
														-														ľ														
	30					÷																																				
	25							-						:		-					-		i																_			
	20	\vdash							-				┼┼			-	+				-							╈	[] -			+										
	15			<u> </u>						:			╋		-	┢	-			#								-										-		-		
	10	$\left - \right $	_	<u> </u>													-			+	_	$\left \right $		_												\parallel						
	5							_						-							_																					
	0																						:																			~ 4
110					10(9					1	0				GE		NI (217	1 5 I	N F B	лı	1 16.	1ET	Ē	20	().1						(0.01	l					0.0	UT
		[GR	Δ\/	FI					<u> </u>		14.3	בוכ			NE		1	<u>c</u> r				T													
		(COE	BLE	ĒS	-	с	oars		$\frac{\Lambda v}{\Gamma}$		ne		_	coa	ars	e		me	ediu					fi	ine			-				SI	LΤ	O	२	CL.	AY	/			
	Sne	cim	en l	dent	tific	ati	on		T								i	(Cla	ass	ific	cal	lio	n											LL	Τ	PL		P		Сс	Cu
•	B-14, S														в	lue	ish							SAI	ND	(SN	1)								NP		NF		NF			
																																				ſ						
																																				+						<u> </u>
-	<u> </u>	cim	on l	den	tific	oti	<u></u>			D1	00			 Г	060	 ר			 Γ	030				n	10)	T	0/,	G	rav	ام/		%	 Sar	nd	1	(%	Silt		%(Clay
•	- Spe в-14, s			*****	and	au				9.					.14					.08		-		0	i Ç	,	÷	70		1.7	, GI			5a1 76.7		-		700	J.11	22		Juy
																									•••••																	
2																																				_						
									-																											_						
1	1								1																																	

,

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDLINE GDT 5/20/14

	3		ne Robert eotechnica aterials an elephone N ww.balterc	B. Balter Co al and Enviro d Construct No. (410) 36 co.com	ompany onmental E ion Inspec 3-1555	Engineer tion and	rs I Testing	3		ATTEF		S LIMITS' R ST METHOD A	
			Technolog						PROJECT NAM				
PR	OJE		CATION _	Fort Washir	ngton, MD				PROJECT NUM	BER	D/	ATE TESTED	
		60						CL	CH				
	P L A	50											
	L A S T I C	40											-
	I Y	30											
	N D E X	20	 						1				
		10	CL-ML					ML	MH				
		٩)		20		40		60 LIQUID LIMIT	8	0	100	
	Spe	cime	en Identi	fication	LL	PL.	PI	Fines	r				
•	B-14,	S-16 @	§ 49.0' - 50.5	5',	NP	NP	NP	23	Blueish Black (5B) S	ILTY SAND(SM))		
												······	
₫												.,	
Ma 2													
LISUAI AWAT													
												······································	<u> </u>

	3	G M T	he R leote later elep ww.l	echr ials hon	nica an e N	il ar d C lo,	nd Con (41	En stru (0)	viro ucti	nm on	ieni Ins	ial f pec	Eng	gin n a	ee	rs I T	esi	tin	g																C	SI	R/	A	IN													DN 422
CL	ENT	KCI	Tec	hnc	olog	lies	;																_	Р	R	сJ	EC	T	NA	M	E _	Pi	isc	at	aw	<u>va</u> y	Ζ)r.	Slo	ope	8	Ro	ac	I F	ail	ure	es					
PR	OJEC	TLC					_																						NU	M	BE	R		,							DAT											····· ; · ;
	400		U.	S. S	6 6	'E C 4)PE 3	NIN 2	IG II 1.	5	13	ES /4		3/8		3	4	6		81	U.S 0 1	5. 9 14 1	SIE 16	20	NI 3	JM 10	BE 40	RS 5	06	60	10	01	40	20	0						HY	DR	OV.	ле —	TE	R						
	100 95												T	k				1		1		ļ 														_																
	90														N	X																	_				_															
	85											-					.													_																			-		_	
	80											: : :												_						_						_	_															
	75						ļ															\ 	\geq		_	_																	_		-							
	70															-		_							$\left \right $	Ц				_																						
L_	65		ļ						_																			\sum					+																		_	
PERCENT FINER BY WEIGHT	60		<u> </u>					$\left \right $	_							-			$\left \right $					\parallel	_				Y	-			+				-								-							
BY W	55		<u> </u>	<u> </u>				-	_																					$\left \right $					-	_	_	_		_									-		-	
NER	50															-								++						_	–				-	_	_						-		-					<u> </u>	-	
NTFI	45								_					-		-								+		_				_	ł		+			_	_						-		-				+		-	
RCE	40					_			_			: :			+	-	: : :					-		+-		-	:				۲	ĺ					_			_				-	-						-	
В	35														$\left \right $	-														-		/	+				-						_									
	30											<u>.</u>															:			_			$\frac{1}{2}$			_	_							-	-						-	
	25						ŀ						••••••			-									-								_			-															-	
	20									_	_				╢			-															╈												+						-	
	15		· ·																											-			-			+	_	_		_			-								-	
	10		<u> </u>	+														-																											-							
	5																								+																											
	0	<u> </u>	1	1	1	100	1.1	41			1			10	1.1			I	1				1		.1	<u>I</u>			L	ł		(0.1	<u> _</u>	<u> </u>			ł	-	_ 1		0.0	01	1	1				1	0	.00	1
		[C		VE	<u> </u>				7		GF	RA	IN	SI	ZE		A A			ME	ΞΤΕ	ΞR	S																				7	
			OE	BL	.ES	S		C	oar					ine	>		0	208	ars	е		n	ne	diu		.1 191	Ī			fii	ne			_						S	ILT	Ċ)F	? (.A`	Y					
	Spe	cim	en l	de	ntif	fica	ati	on		Γ		····										CI	a	ss	ific	ca	tic	ึ่งท														LL			PI	L_		ΡI		Сс	;	Cu
•	B-15, S	-6 @ 1	0.0' -	12.0'	•												(Str	on	g E	Bro	w	1 (4	4/6) C	LA	YE	ΞY	SA	N)(S	C)										38	3		2:	2		16				
										-																																										
										-																																									_	
l.	Spe	cim	en l	dei	ntif	fica	atio	on		-	 C)1(00				D	60)		Γ		D	30)				D1	0			0	60	Gr	a	ve			%	 Sa	nc	1			%	L Si	lt	-	%		lay
•	B-15, S				· ·					-		12.	·· · · · ·		1		0.2				 			95										-	12						64.								23.			-
					•										+																	-												$\left \right $								
							-																																													

•

	3	The Geo Mate Tele www	Robert B technical erials and phone N balterco	8. Balter Co I and Enviro I Construct o. (410) 36 o.com	mpany onmental E ion Inspec 3-1555	Enginee tion and	rs I Testing	9		ΑΤΤ		G LIMITS' R EST METHOD A	
1		KCI Te	chnologi	es		·····						e & Road Failures	
PF	ROJEC		TIONF	ort Washir	ngton, MD				PROJECT NU	JMBER		DATE TESTED	
		60 50						CL	CH				
	P L A S T	40-											
	 C 	30											
	T Y I N	20-											
	D E X	10-					•						
			L-ML		20		40	ML	MH) 60		80	100	
		Ū			20		40				00	100	
	Spe	cimen	Identifi	cation	LL	PL	PI	Fines	Classification				
\bullet	B-15,	S-6 @ 10.	0' - 12.0',		38	22	16	23	Strong Brown (4/6) CLAYEY SA	ND(SC)		
41 /07/c													·····
									.,				
					_								
					_								
									····				

	9	5	G M T	he F eote later elep ww.	ech rials hoi	nica s an ne N	ala nd (No.	and Col . (4	IE nsi 10	nv tru	iror ctic	nm on I	ent Ins	lai I pec	En	gir on s	an	ers d 7	ſes	tin	g															C	ŞF	٩,	41	N													ON 422
1	LIEN.																																								pe	<u>& F</u>	Ro	ad	Fa	ailu	ire	s					
P	ROJE	СТ	LO																												UN	B	ER							<u> </u>		AT											
	10	~~~		U 	.5. :	SIE\ 6									1/2	3/8			4	6		81(972	U.S 0 1	41	32	20	30	4	0 :	S <u>50</u>	60	1.	00 1	140	20	0						-1Y[)R(0M	IET	EF	۲ 						
						ł					I				1	1			Ĩ								1						I	η																			
		15 - 10																														7																					
		5-			_																												\																			_	
	8	.0	-				+										_																-				_		-														
	7	5					+			+						_									_	+	_			-			۱ 	\mathbb{R}													_	_		╞			
	7	0	 								-						_	_																N N			-		_		-						-						
Ę	6	5–					_	-	-									-			-				-		_			-	_						-							+	-							_	
VEIGH	6	0-			-					┿		+-	-								-									+					N.		-						-	$\left \right $									
ВΥ V	5	5	+									-					-										-			-	_			_			-		+		-						_			-		-	
PERCENT FINER BY WEIGHT	5	아								-							-													+				_				-	_								_	_					
	4	5						-			-					_	-		:						+		+				-												_										
PERC	4	⁰├	+						-		+					-						-					-										-						_	┼┼						-		-	
	3							-																						+				-			+	-	+					$\frac{1}{1}$		-	_			-			
	3								T		1							-								╉	+										1								+-								
	2									T							-	-																														-					
	2																																					1	1													-	
	1: 1:							ŀ																															••••														
		5																																					-													-	
																																																				~~~~	
						1	00	}							-	10				(	ЗR	All	NS	SIZ	1 E J	N	MI	LL	M	ЕΤ	ER	RS	(	9.1								(	0.0	1							0	.00	1
		Γ	C	ОВ	BI	<u>ج</u>					(	GF	۶Ą	VE	ΞL												١N														SIL	т	0	P	C	17		,					
											ars	e	]		f	ine	2		c	oa	rse	<u>}</u>				um					fi	ne									רר ,	- 1		· ` `			<u> </u>						
•	Sре в-15,						ica	ati	or	) 1									<u>ی</u>	rec	anio						08 วาว				511	T/	ML	•									_L 31			⊇ 23			기 8	-	Сс		Cu
-	,					,																	~~10									- • (	•••	/ 							_					<u>.</u> 0							
_																																												-								_	
		********																			·																							-			-			-		-	
	Spe					•	ica	ati	or	١				10					De					Ľ	)3(	)				D	10			%	60			el		%	6S		d			9	6S	Silt			******		lay
•	B-15,	5-12	@ 3:	5.0' -	36.5	·.					_			1.75	, 				0.0	183		-														0.0	)		_		44	1.6							5	5.4	1		
											_																																										
																	-					-																••••••															

GRAIN SIZE 15570-0 PISCATAWAY SLOPE FAILURE GPJ MTA REDLINE GDT 5/20/14

.



	3		N T V	late elep ww.	ech rials bhoi bal	ert f nica s an ne N terco	l a d C lo. o.c	nd Con (41 om	En istr I0)	viro uct	onr lion	ner i Ins	ital spe	En ctic	gin on a	ee anc	rs I To	esti	ing																			Т	ES	T	ME	ΞT	HC	DD A			<b>ON</b> 0422
	LIENT																																ata	awa	ay I	Dr.	Slc		<u>&amp; R</u>					<u>s</u>			
PI	ROJEC	T	LC			N SIEV																	 יידור			JE MB			UN	1BI	ER																
	100	. –	_	τ τ	, , , , 	51EV 6	4	3		2 1	.5	1 :	3/4	1/2	23/8	} 	3	4	6		10 1	5. c 14 1	6	20	30	) 4	0	50	60	1(	00 1	40	200	2	-			י ד	טזר				× 		· • • •		
						I					1	l		1	ľ				'	-+1		+	4		$\parallel$	-					ł	1															
	95							-	-									•											-		R																
	90	1	+							+			ŀ				+				-							1			-				┢					╈					+		
	85								+				:  :  :					:					-		$\left  \right $		-	+				$\downarrow$			-										-		
	80		-						-				:					:																	-			_		_							
	75	,													_													<b>_</b>							ļ												
	70				_								: 		_																	_															
	65	L																																			-										
븅	00																																														
PERCENT FINER BY WEIGHT	60																																														
Z BY	55		1		+																							-						╈													
LINE	50	-	+	+	+				┥	$\neg$	_						+															-			+								+		+		
NTE	45	-	╀		+		╫	:					: 				+		-									-				+		_	-			-		╬	╢			_	-		
RCE	40		+								_		: :			+	-	-	_								-	-				_													-		
L T	35				_		-		_				:		_		_		_				_					_							_		ļ	<u> </u>									
	30	Ļ			_		-				_																_					_			-			_							-		
	25																																												_		
	20																	-																													
								•••••																	Π								:														
	15				-				-												$\square$											-						-		T					T		
	10	F	T					÷			-					Ħ			•••				-+					-					-					-					-				
	5	┢			+-											╢			-															+									-	_	-		
	0	L		l		1							:		<u>  </u> 10					<del></del>			1								(	0.1							0	.01						0.0	01
																			G	RA	١N	SI	ZE	IN	М	ILL.	.IM	IET	ΈF	۲S																	
		ſ	 C	·∩¤	201	ES	2				C	R/	٩V	EL										s,	A١	١D												CII	.T (	Ω.		~ı	 ^ \/	 r			
		L	ر 	, UE	וטי	C	, 		C	coa	rse				fine	3		co	bar	se		n	nec	iur	n				fi	ne											· ·						
	Spe						ica	atio	on													CI	as	sif	fic	ati	or	۱											L	L		PL		ΡI		Сс	Cu
•	B-17, S	T-1	1@	22.0'	- 24.	0',							М	ott	ed	Gr	eer	nish	ı G	ray	/ D	ark					rov	wn	(2.	5/4	) L.F	EA	N C	CL/	<b>۱۲</b> ۱	vitl	1		4	7		19		28			
-																							S	NI.	D(C	:L)																	_				
											_																														-		-+		+		
$\vdash$																																											$\rightarrow$				
	Spe	ci	m	en	lde	ntif	ica	atio	on			[	D1	00				D6	0				D3	0				D	10	)		%	6G	Gra	ive	)	(	%S	an	d	1	ç	%8	Silt	1	%C	lay
•	B-17, S	Τ-'	1@	22.0'	- 24.	0',							4.7	'5		ļ										_								0.0				2	5.6					•	74.4	4	
																															_																
																-					-										+										+						
											+															+															+						

GRAIN SIZE 16570-0 PISCATAWAY SLOPE FAILURE GPJ IMTA REDLINE GDT 5/20/14

		The Geo Ma Tel ww	e Robert otechnica terials an ephone N w.balterc	B. Balter al and Er id Const No. (410) co.com	r Comp avironr ruction ) 363-1	pany nental I Inspec 1555	Enginee ction an	ers d Testin	9		ATTE			RESULTS ASTM D4318
СГ	IENT	<u>KCI T</u>	echnolog	gies						PROJECT NA	ME Piscataw	ay Dr. Slope	& Road Failures	
PF	ROJE		ATION _	Fort Wa	shingt	on, MD				PROJECT NU	MBER	C	ATE TESTED	
		60							CL	CH				
	PL	50 -												
	A S T I	40												
	C I T Y	30-							•					
	I N D E X	20-												
	х	10-	CL-ML					$\square$						
		0			20			40	(ML)	MH) 60	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	80	100	
									-	LIQUID LIMIT				
	Spe	ecimer	Identi	ficatior	۱	ԼԼ	PL	PI	Fines	Classification				
•	B-17,	ST-1 @	22.0' - 24.0	)',		47	19	28	74	Mottled Greenish (	Gray / Dark Red	dish Brown (	2.5/4) LEAN CLAY	with SAND(CL)
							······							
										······································				


Sat, 17-MAY-2014 11:27:25

# LABORATORY TESTING

## **Natural Moisture Content**

The natural moisture content of selected samples was determined in accordance with ASTM D 2216. The moisture content of the soil is the ratio, expressed as a percentage, of the weight of water in a given mass of soil to the weight of the soil particles. The results are summarized in the table following this section of the report.

# **Grain Size Distribution**

Grain size tests were performed on representative soil samples. The samples were washed over a U. S. standard No. 200 sieve to remove the fines (particles finer than a No. 200 mesh sieve). The samples were then dried and sieved through a standard set of nested sieves. This test was performed in a manner similar to that described be ASTM D 1140. The results are presented as percent finer by weight versus particle size curves on the attached Grain Size Distribution sheets.

## **Soil Plasticity**

Representative samples of the site soils were selected for Atterberg Limits testing to determine their soil plasticity characteristics. The soil's Plasticity Index (PI) is representative of this characteristic and is bracketed by the Liquid Limit (LL) and the Plastic Limit (PL). These characteristics are determined in accordance with ASTM D 4318. The LL is the moisture content at which the soil will flow as a heavy viscous fluid. The PL is the moisture content at which the soil begins to lose its plasticity. The data obtained are presented on the attached Grain Size Distribution sheets and summarized in the table following this section of the report.

Certain soils swell and shrink with increases and decreases in soil moisture. The PI is related to this potential volume change ability. When such volume changes occur in soils confined beneath foundations, floor slabs and pavements, structural deformations can be produced. Past experience has shown that soils having a PI of less than 30 are only slightly susceptible to volume changes. Soils having a PI greater than 50 are generally very susceptible to this volume changes. Soils with a PI between these limits have moderate volume change potential. The soils tested at this site are moderately susceptible to volume change.

# **Percent Fines**

The percentage of fine-grained particles present in selected samples was determined by passing the samples through a No. 200 mesh sieve. The percent by weight passing the sieve is the percentage of fines or portion of the sample in the silt and clay size range. This test was conducted in accordance with ASTM D 1140. The results are shown on the attached Grain Size Distribution sheets.

# **Direct Shear (DS) Test**

The consolidated drained strength properties of the selected samples were determined in general accordance with ASTM 3080. The results of the Modified Procter test were utilized in compacting the test samples to the desired density and moisture content for the Direct Shear test. The test method is generally performed in following steps:

- 1. Place the test specimen in the direct shear device.
- 2. Apply a predetermined stress, providing for wetting or draining of the test specimen.
- 3. Consolidate the specimen under normal stress.
- 4. Unlock the frames that hold the specimen.
- 5. Displace one frame horizontally with respect to the other at a constant rate of shearing deformation and measure the shearing force and horizontal displacements as the specimen is sheared.
- 6. Plot the shear stress at failure as a function of normal stress termed as "Mohr-Coulomb diagram".

A series of such tests at different normal stresses are performed and Mohr-Coulomb diagrams drawn. A failure envelope is drawn with the help of these diagrams and effective stress shearing strength parameters, cohesion (c') and internal friction angle ( $\phi$ ') determined. The results of direct shear tests are summarized in the table following this section.

# **Triaxial Shear**

Undisturbed samples are extruded from their sampling tubes for triaxial shear testing. The sections are then trimmed into cylinders 2.4 inches in diameter and encased in rubber membranes. Each is then placed in a compression chamber and confined by all-around water pressure. An increasing axial load is then applied until the sample failed in shear. The test results are presented in the form of Stress-Strain Curves and Mohr Diagrams on the accompanying Triaxial Shear Test sheets.

# Consolidation

A single section of the undisturbed sample is extruded from its sampling tube for consolidation testing. The sample is then trimmed into a disc 2.4 inches in diameter and 1-inch thick. The disc is confined in a stainless steel ring and sandwiched between porous plates. It is then subjected to incrementally increasing vertical loads and the resulting deformations measured with a micrometer dial gauge. The test results are presented in the form of a pressure versus percent strain curve on the accompanying consolidation test sheet.

SLOPE STABILITY ANALYSES

Appendix D























# **SLIDE FEATURES**

Appendix E



	Engineers		EXISTING SIT	E CONTOURS		Figure No.
	Planners Scientists		E-1			
$V \cap I$	936 Ridgebrook Rd.	FORT WAS	HINGTON, PRINCE (	GEORGES COUNTY, I	MARYLAND	
$\Lambda \cup I$	Sparks, MD 21152	DRAWN BY	APPROVED BY	SCALE	DATE	KCI JOB NUMBER
TECHNOLOGIES	410-316-7800   Fax 410-316-7817	LSG	KA	NTS	MAY 2014	07100627.W



			360
			000
			320
			280
			240
			200
			160
			120
	/		80
5			0

Figure No.

KCI Job No.07100627W



Monday, May 19, 2014 AT 09:41 AM M:\2010\07100627.W\Drawing:





Monday, May 19, 2014 AT 09:41 AM M:\2010\07100627.W\Drawing:



Monday, May 19, 2014 AT 09:41 AM M:\2010\07100627.W\Drawing:

PLOTTED: Monday, May 19, 2014 AT 09:41 AM FILE: M:\2010\07100627.W\Drawings\Roadway\pHC-X001_piscataway.dgn



Monday, May 19, 2014 AT 09:41 AM M:\2010\07100627.W\Drawing



Monday, May 19, 2014 AT 09:42 AM M:\2010\07100627.W\Drawings

**ROADWAY PLANS** 

Appendix F

# INDEX OF SHEETS

1	T–1	TITLE SHEET
2	AB-1	ABBREVIATIONS SHEET
3	TS-1	ROADWAY DETAIL&TYPICAL SECTION
4	GS-1	GEOMETRY SHEET
5-6	PS-1 TO PS-2	ROADWAY PLANS
7–8	PR-1 TO PR-2	ROADWAY PROFILES

1–6 CS-1 TO CS-6 ROADWAY CROSS SECTIONS

DEPARTMENT OF PUBLIC WORKS AND TRANSPORTATION PRINCE GEORGE'S COUNTY, MARYLAND

**ROADWAY IMPROVEMENTS** 

TΟ

# PISCATAWAY DRIVE

CONTRACT NO.

# PROJECT NO. XXX-XXX-XX F.A.P. NO. BRF - XXXX (X) X

SCALE: |"=1000'



of the State of Maryland.

HORIZONTAL

DATLIM

VERTICAL

DATUM



#### OWNER'S/DEVELOPER'S/APPLICANT INFORMATION

NAME:	PRINCE GEORGE'S COUNTY GOVERNMENT			
	DEPARTMENT OF PUBLIC WORKS AND TRANSPORTATION			
ADDRESS:	INGLEWOOD CENTER 3			
	9400 PEPPERCORN PLACE, SUITE 310			
	LARGO, MD 20774			
REPRESENTATIVE:	EDWARD J. BINSEEL			
	CHIEF, HIGHWAYS & BRIDGES			
PHONE:	(301) 883-5642			

### UTILITY CERTIFICATION

IHEREBY CERTIFY THAT THE EXISTING AND/OR PROPOSED UNDERGROUND UTILITY INFORMATION SHOWN HEREON HAS BEEN CORRECTLY DUPICATED FROM UTILITY COMPANY RECORDS. FURTHER, THAT THIS PROJECT HAS BEEN CAREFULLY COORDINATED WITH EACH INVOLVED UTILITY COMPANY AND ALL AVAILABLE UNDERGROUND UTILITY INFORMATION RELATIVE TO THE PLAN HAS BEEN SOLICITED FROM THEM.

SIGNATURE: _____ DATE: _____

# **ABBREVIATIONS**

Inch

IN

A.A.S.H.T.O	American Association of State Highway. Transportation Officials
	. Average Daily Traffic
AHD	
	Approximate
₽ or B/L	Baseline
BK	Back /Book
BIT	. Bituminous
B.C.	Bituminous Concrete
B.M.	Bench Mark
BOT.	
	. Center of Curve
	. Cable Television
	. California Bearing Ratio
€ or C/L	
CL	
	Chainlink Fence
	Corrugated Metal Pipe
С.О.	. Cleanout
COMB	. Combination
CONC.	. Concrete
CONSTR	Construction
COR.	
CORR.	
C.Y.	
	. Degree of Curve
	. Design Hourly Volume
D.I	
DIA	
	Double Opening
Е	
Е	
Ε	. External Distance
EA	. Each
E.B	Eastbound
E.R.C.C.P.	. Elevation Elliptical Reinforced Cement
	Concrete Pipe
FS	. End Section
EX. or EXIST.	Evicting
FT	
F or FL	Flowine
	Flat Bottom Ditch
	Fire Hydrant
FW.D	
G	Gas
G.V	
Н.В.	. Handbox High Density Polyetheylene
H.D.P	. High Density Polyetheylene
HDWL	Headwall
HERCP	Horizontal Ellipitical Reinforced
	Concrete Pipe
	High Point

I.S.T... .. Inlet Sediment Trap INV. . Invert J.B. .. Junction Box Κ... K Inlet 1 _ Length Linear Feet L.F. .. Liquid Limit L.L. LP Low Point L.P. . Light Pole IΤ Left MAC . Macadam M.C. . Moisture Content MAX. Maximum M.D.D. MOD .... .. Modified MIN. . Minimum N ...North .. Northbound N.B. . N.E. . Northeast N.P. . Non-Plastic O.C. On Center OHE . Overhead Electric О.М. . Optimum Molsture PAV'T... .. Pavement P.C. Point of Curvature P.C.C. Point of Compound Curvature P/C Point of Crown Profile Grade Elevation P/GE Profile Ground Elevation P.G.E. P.G.L. .. Profile Grade Line P/GL Profile Ground Line P/R Point of Rotation P.I. Plasticity Index P.I. Point of Intersection Point of Beginning P.O.B. P.O.C. Point On Curve P.O.E. . Point of End P.O.T. Point On Tangent PROP . Proposed ...Point of Reverse Curve PBC PT. . Point P.T. Point of Tangency P.V.C. Point of Vertical Curve PVC Polyvinyl Chloride PVI Point of Vertical Intersection **PVRC** PVT .. . Point of Vertical Tangency R Radius R.F. Rock Fragments RT. . Right RW or R/W... Right of Way Reinforced Cement Pipe R.C.P. Reinforced Cement Concrete Pipe R.C.C.P.

CONVENTIONAL SIGNS

H.B. ■

R.Q.D	.Rock Quality Designation
R.M	Rootmat
S	
	Sanitary Sewer
SB or S/B	
S.D	Storm Drain
SDD	Surface Drain Ditch
	Super Elevation
SF	
S.F	Square Feet
SHT	. Square Feet . Sheet
SPP	Structural Plate Plpe
	Standard Penetration Testing
	Stopping Sight Distance
SSF	Super Silt Fence
STD	Standard
STA	
	Single Opening
S.Y	.Square Yards
SWM	Stormwater Management
т	Tangent
т	. Telephone
	Top of Cover
T.G	Top of Grate
T or TL	Traverse Line
тм	. Top of Manhole
TRAV	Traveraa
	Temporary Swale
т.s. т.s.	. Top of Slab
T.S	Topsoil
TYP	Typical
U.D.	
	. Underground
U.P	Utility Pole
U.S.D.A.	United States Department
	of Agriculture
VO	Vertical Clearance
V.C.L.	Vertical Curve Length
W	Water
W	West
W.B	
	Westbound
W.M	
	Wrapped Steel
WUS	Waters of the United States
W.V	
**.V.	

SOILS LEGEND							
A-2 SAND & FINES A-2-4 SILTY SAND	A-2-7 CLAYEY SAND A-7-2 SANDY CLAY A-4 SILT A-4-7 CLAYEY SILT BORING TARGETS HORIZONTAI	A-7-4 SILTY CLAY A-7 CLAY CLAY A-6 COLLOIDAL CLAY A-5 MICA, DIATOMS AND PROFILES SCALE:					
AO-ABOVE OPTIMUM SAT-SATURATED LIO-LIQUEFIED TS-TOPSOIL RM-ROOT MAT BC-BITUMINOUS CONCRETE SB-STONE BASE PCC-PORTLAND CEMENT CONCRETE RPPSA - ROCK PENETRATED BY POWER SOIL AUGER	VERTICAL - LL-LIQUID LIMIT ( PI-PLASTICITY IND NP-NON-PLASTIC MDD-MAXIMUM DR OMC-OPTIMUM MO USC-UNIFIED SOIL USDA-UNITED STA AGRICULTUF W/GR-WITH GRAVE	SEE PROFILE SHEETS (2) (EX (2) Y DENSITY (pcf) ISTURE CONTENT (2) CLASSIFICATION TES DEPARTMENT OF RE CLASSIFICATION EL					
ALL DIMENSIONS, DI AN ASTERISK AT T STRATA WAS VISUA MDD & OMC PER A N PER A.A.S.H.T.O. UNLESS OTHERWISE BORINGS FOR ROAD FOR 24 HOURS WIT WATER ENCOUNTER		ALL SOIL SURVEY WERE LEFT OPEN URE OR FREE SOIL SURVEY					

н.в.
<b>&gt;</b> •
r
XX
XX
+50
3 52
F.H.
н
II+00
EX.27" S
$\rightarrow \rightarrow \rightarrow$
LOD
F0
—— F ——
• • • •
——WUS—

PROPOSED MEDIAN BARRIER

PROPOSED PIPE / CULVERT	( <b></b> )
EXISTING PIPE / CULVERT	
EXISTING DROP INLET	
WETLAND	
WETLAND BUFFER	— в —
WATERS OF THE U.S.	J ^{WUS}
HEDGE /TREE LINE ·····	$\sim\sim\sim\sim\sim$
BUSH /TREE	$\odot$
CONIFEROUS TREE	What we want
GROUND ELEVATION	
GRADE ELEVATION	DATUM LINE
HEDGE	
SILT FENCE	SF
	0.
EARTH DIKE	
TRAFFIC BARRIER W/BEAM	<del></del>
WARNING SIGNS	•
CHANNELIZING DRUMS ·····	-
WORK ZONE	
TREE PROTECTION	TP



# SOILS LEGEND

## EXAMPLE SOIL BORING PROFILE



	SOILS TEST DATA							
RING MBER	SAMPLE DEPTH	LL	ΡI	USDA	USC	MDD	OMC	REMARKS
09	1.8 - 8.0	18	NP	SANDY LOAM	-	-	-	w∕GR
09	8.0 - 14.0	41	22	SILTY CLAY LOAM	CL	121	12	-

		DEPARTMENT OF PI AND TRANSPO PRINCE GEORGE'S COUNT	RTATION	
		PISCATAWAY DRI	VE	AB-I
		ABBREVIATIONS SH	IEET	
	REVISIONS	SCALE: N/A	DWG. 2	OF 8
-RS		APPROVED	FOR DARRELL B.	MOBLEY, DIRECTOR
		DESIGNED: DKH	CONTRA	
		DRAWN: BBB	XXX-	
		CHECKED: KTB	ROAD NO.	JOB NO.
		APPROVED:	FILE	NO
		CHIEF, DIV, OF HIGHWAYS & BRIDGES DATE	-  """	110.



### PAVEMENT LEGEND

1.5" HOT-MIX ASPHALT SUPERPAVE 9.5mm FOR SURFACE, PG 64-22, LEVEL-2

1

2

3

4

5

1.5"

3.0"

- HOT-MIX ASPHALT SUPERPAVE 9.5mm, PG 64-22, LEVEL-2
- HOT-MIX ASPHALT SUPERPAVE BASE, 19.0mm, PG 64-22, LEVEL-2
- 4.0" GRADED AGGREGATE SUBBASE
  - 6" LONGITUDINAL UNDERDRAIN (STD. 300.14, GEOTEXTILE FABRIC TO BE MSMT CLASS SD TYPE II OR APPROVED EQUAL.



#### PRINCE GEORGE'S COUNTY, MARYLAND TS-1 PISCATAWAY DRIVE TYPICAL SECTIONS REVISIONS SCALE: N.T.S. DWG. 3 OF 8 APPROVED ____ DATE FOR DARRELL B. MOBLEY, DIRECTOR DESIGNED: DKH CONTRACT NO. XXX-XXX ROAD NO. JOB NO. DRAWN: BBB CHECKED: KTB APPROVED: FILE NO. CHIEF, DIV. OF HIGHWAYS & BRIDGES DATE

# DEPARTMENT OF PUBLIC WORKS AND TRANSPORTATION PRINCE GEORGE'S COUNTY, MARYLAND



CURVE DATA						
CURVE	DELTA	Dc	RADIUS	TANGENT	LENGTH	EXTERNAL
PISC-I	23° 42′04.96"	19° 05′54.94"	300.0000′	62.9503′	124.1001′	6.5334
PISC-2	35°27′48.56'	19° 05′54.94"	300.0000′	95.9254′	185.6864′	14.9630'
PISC-3	17°20'47.70"	14° 41'28.41"	390.0000	115.0324'	223.7210"	16.6109"
PISC-4	22° 02′ 33.23"	16°27′33.821"	348.1038′	57.2042′	113.5331′	4.3380'
PISC-5	44° 35′22.67'	19° 05′54.94"	300.0000′	123.0073'	233.4708′	24.2388'

	Engineers
	PLANNERS
	Scientists
	Construction Ma
K C I technologies	936 Ridgebrok Ro Sparks, Marvland 2 Telephone: (410) 316 Fax: (410) 316-7812

LOCATION	CURVE		STATION	NORTH	EAST	BEARING
	DICC	POT	20+00.00	376,006.4903	1,312,449.6269	N57°47′50.00
		PC	21+09.99	376,065.1084	1,312,542.7008	
	PISC-I	PI	21+72.95	376,098.6557	1,312,595.9673	
		PT	22+34.09	376,150.7849	1,312,631.2559	
		PC	26+95.88	376,533.1885	1,312,890.1222	N34° 05′ 45.0
		PI	27+91.80	376,612.6244	1,312,943.8959	
PISCATAWAY	PISC-2	ΡT	28+81.56	376,646,1251	1,313,033,7813	
DRIVE						
	PISC-3	PC	32+05.81	376,759.3651	1,313,337.6144	N69° 33′ 33.6
		PI	32+63.02	376,779.3430	1,313,391,2167	
		PT	33+19.35	376,814,3937	1,313,436,4246	
		PC	33+19.35	376,814.3937	1,313,436,4246	N52°12′45.9
		PI	33+87.15	376,855.9361	1,313,490.0054	
	PISC-4	ΡT	34+53.27	376,914,5506	1,313,524.0790	
	P	PC	35+68.11	377,013.8360	1,313,581,7953	N30°10′12.6
		PI	36+91.12	377,120,1803	1,313,643,6151	
	PISC-5	PT	38+01.58	377,239.3126	1,313,612,9840	\$76°19'25"
		POT	38+76.35	377, 311, 7291	1,313,594,3644	

	DEPARTMENT OF PUBLIC WORKS AND TRANSPORTATION prince george's county, maryland			
0 100 200	PISCATAWAY DRIV	E GS-I		
SCALE:  " = 100'	GEOMETRIC LAYOUT	SHEET		
REVISIONS	SCALE:  * = 100'	DWG. 4 OF 8		
JAGERS	APPROVED	FOR DARRELL B. MOBLEY, DIRECTOR		
AD	DESIGNED: DKH DRAWN: BBB	CONTRACT NO. XXX-XXX		
800	CHECKED: KTB APPROVED:	ROAD NO. JOB NO.		
	CHIEF, DIV. OF HIGHWAYS & BRIDGES DATE	FILE NO.		



юлау, мау 19, 2014 ат 09:03 АМ \\corp.kci.com\sparks-projects\2010\07100627.M\Drawings\Roadway\pHD-P001_piscataway.d

		DEPARTMENT OF PUBLIC WORKS AND TRANSPORTATION prince george's county, maryland			
	0 15 30 60	PISCATAWAY DRIV	E PS-I		
	SCALE: I" = 30'	ROADWAY PLAN SHEE	ETS		
	REVISIONS	SCALE: I" = 30'	DWG. 5 OF 8		
IAGERS		APPROVED	FOR DARRELL B. MOBLEY, DIRECTOR		
		DESIGNED: DKH	CONTRACT NO.		
ad 1152		DRAWN: BBB	XXX-XXX		
7800		CHECKED: KTB	ROAD NO. JOB NO.		
'		APPROVED:			
		CHIEF, DIV. OF HIGHWAYS & BRIDGES DATE	FILE NO.		







CHIEF, DIV. OF HIGHWAYS & BRIDGES

Monday, May 19, 2014 AT 09:03 AM \\corp.kci.com\sparks-projects\



PISCATAWAY DRIVE PROFILE GRADE LINE HORIZONTAL SCALE: 1" = 30' VERTICAL SCALE: 1" = 5'





	DEPARTMENT OF PU AND TRANSPOR prince george's county,	TATION	ORKS
	PISCATAWAY DRIV	Έ	PR-2
	ROADWAY PROFIL	E	
REVISIONS	SCALE: AS SHOWN	DWG. 8	OF 8
	APPROVED	FOR DARRELL B. N	IOBLEY, DIRECTOR
	DESIGNED: DKH	CONTRAC	
	DRAWN: BBB	XXX-X	XX
	CHECKED: KTB	ROAD NO.	JOB NO.
	APPROVED:		

CHIEF, DIV. OF HIGHWAYS & BRIDGES

DATE

FILE NO.